```
University of Crete - Department of Mathematics and Applied Mathematics
Problem Set No 14
Solutions
```

1. Let X be the space $C^{1}([a, b])$ of functions with a continuous derivative in $[a, b]$ (side derivatives at the end-points). We define the norm.

$$
\|f\|=|f(a)|+\left\|f^{\prime}\right\|_{\infty} .
$$

Show that this is indeed a norm and that X, with this norm, is a complete space.
$\stackrel{\rightharpoonup}{\circ}$ For $x \in[a, b]$ we have $f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t$.

Solution: The only norm property that is nontrivial to verify is the property

$$
\|f\|=0 \Longrightarrow f=0
$$

But $\|f\|=0$ implies $f(a)=0$ and $f^{\prime}=0$ everywhere. Since $f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t$ we also obtain that $f=0$ everywhere.

To prove completeness assume f_{n} is a Cauchy sequence in our space. Then $f_{n}(a)$ is a Cauchy sequence in \mathbb{C} and f_{n}^{\prime} is a Cauchy sequence in $C([a, b])$. By the completeness of \mathbb{C} and $C([a, b])$ we obtain first that $f_{n}(a)$ converges to a value $A \in \mathbb{C}$ and that f_{n}^{\prime} converges to a function $B(x)$ in $C([a, b])$. We claim that this implies that f_{n} converges to the function

$$
f(x)=A+\int_{a}^{x} B(t) d t
$$

which is clearly a function in $C^{1}([a, b])$. Indeed we have

$$
\left\|f_{n}-f\right\|=\left|f_{n}(a)-f(a)\right|+\left\|f_{n}^{\prime}-f^{\prime}\right\|_{\infty}
$$

and, since $f(a)=A$ and $f^{\prime}(t)=B(t)$, we have

$$
\left\|f_{n}-f\right\|=\left|f_{n}(a)-A\right|+\left\|f_{n}^{\prime}-B\right\|_{\infty}
$$

But both terms above converge to 0 .
2. Consider the sequence space $\ell^{1}(\mathbb{N})$ which consists of all complex sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ such that

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|<\infty
$$

The norm is $\|x\|_{1}=\sum_{n=1}^{\infty}\left|x_{j}\right|$. Consider the operator $T: \ell^{1}(\mathbb{N}) \rightarrow \ell^{1}(\mathbb{N})$ defined by

$$
T x=\left(x_{2}, x_{3}, \ldots\right)
$$

Show that it is a bounded operator and find its norm.

Solution: We have

$$
\|T x\|_{1}=\sum_{n=2}^{\infty}\left|x_{n}\right| \leq\|x\|_{1},
$$

so $\|T\| \leq 1$.
Choosing $x=(0,1,0, \ldots)$, for example, shows that $\|T x\|_{1}=\|x\|_{1}$ is possible, so that $\|T\|=1$.
3. Consider the Banach space $\ell^{2}(\mathbb{N})$ which consists of all complex sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ such that

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty
$$

The norm is $\|x\|=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}$.
If the series $\sum_{n=1}^{\infty} a_{n} x_{n}$ converges for every $x \in \ell^{2}(\mathbb{N})$ (i) show that

$$
T x=\sum_{n=1}^{\infty} a_{n} x_{n}
$$

is a bounded linear functional $\ell^{2}(\mathbb{N}) \rightarrow \mathbb{C}$. (ii) Show also that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$ (in other words the sequence $a=\left(a_{1}, a_{2}, \ldots\right)$ is in $\ell^{2}(\mathbb{N})$).
'For the first question apply the Banach-Steinhaus theorem to the sequence of functionals

$$
T_{N} x=\sum_{n=1}^{N} a_{n} x_{n}
$$

Solution: (i) Define the linear functionals $\ell^{2}(\mathbb{N}) \rightarrow \mathbb{C}$

$$
T_{N}(x)=\sum_{n=1}^{N} a_{n} x_{n}
$$

By the Cauchy-Schwarz inequality they are bounded functionals, with $\left\|T_{N}\right\| \leq\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2}$. For fixed $x \in \ell^{2}(\mathbb{N})$ we are assuming that $T_{N}(x)$ converges, hence it is a bounded sequence. By the Banach-Steinhaus theorem we have that, for some finite positive number M,

$$
\left|T_{N} x\right| \leq M\|x\| .
$$

Since $T x=\lim _{N} T_{N} x$ it follows that we also have $|T x| \leq M\|x\|$ and T is a bounded linear functional (the linearity is obvious).
(ii) For $N=1,2, \ldots$ define $x_{N}=\left(\overline{a_{1}}, \overline{a_{2}}, \ldots, \overline{a_{N}}, 0,0, \ldots\right)$. By (i) we have

$$
|T x| \leq M\|x\|
$$

But $T x_{n}=\sum_{n=1}^{N}\left|a_{n}\right|^{2}$ and $\|x\|=\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2}$ so that we have

$$
\sum_{n=1}^{N}\left|a_{n}\right|^{2} \leq M\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

or

$$
\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq M
$$

This implies that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \leq M^{2}$ as we had to show.

