1. If $E \subseteq[0,2 \pi]$ and $\xi_{n} \in \mathbb{R}$ is any sequence show that

$$
\int_{E} \cos ^{2}\left(n x+\xi_{n}\right) d x \rightarrow \frac{1}{2}|E| .
$$

"Ö'Use the Riemann-Lebesgue Lemma.

Solution: Observe first that if ϕ_{n} is any real sequence and $f \in L^{1}(\mathbb{T})$ then

$$
f f(x) \cos \left(n x+\phi_{n}\right) d x \rightarrow 0, \quad \text { as }|n| \rightarrow \infty
$$

This is immediate from the Riemann-Lebesgue lemma as the above integral is equal to

$$
\frac{1}{2}\left(\widehat{f}(-n) e^{i \phi_{n}}+\widehat{f}(n) e^{-i \phi_{n}}\right)
$$

Next write

$$
\begin{aligned}
\cos ^{2}\left(n x+\xi_{n}\right) & =\frac{1}{4}\left(e^{i\left(n x+\xi_{n}\right)}+e^{-i\left(n x+\xi_{n}\right)}\right) \\
& =\frac{1}{2}+\frac{1}{2} \cos \left(2\left(n x+\xi_{n}\right)\right)
\end{aligned}
$$

which implies

$$
\int_{E} \cos ^{2}\left(n x+\xi_{n}\right) d x=\int_{E} \frac{1}{2}+\frac{1}{2} \int \chi_{E}(x) \cos \left(2\left(n x+\xi_{n}\right)\right)=\frac{1}{2}|E|+o(1)
$$

as we had to show.
2. If $0<\alpha<\beta<1$ construct a function f which is Lip- α but not Lip- β.

Solution: For $\eta \in(0,1)$ let

$$
f_{\eta}(x)=x^{\eta}, \quad \text { for } x \in[0,1] .
$$

Then, for $x>0, f_{\eta}^{\prime}(x)=\eta x^{\eta-1}$ and by the Mean Value Theorem and for $0<h<1$ we have for some $\xi \in[x, x+h]$

$$
f_{\eta}(x+h)-f_{\eta}(x)=f_{\eta}^{\prime}(\xi) h=\eta \xi^{\eta-1} h=\eta\left(\frac{h}{\xi}\right)^{1-\eta} h^{\eta}
$$

If $h \leq x$ then $\left(\frac{h}{\xi}\right)^{1-\eta} \leq 1$ so that in that case we have $f_{\eta}(x+h)-f_{\eta}(x) \leq \eta h^{\eta}$. If $x<h$ then $f_{\eta}(x+h)-f_{\eta}(x) \leq$ $(x+h)^{\eta} \leq 2^{\eta} h^{\eta}$. So whenever $x>0$ we have $f_{\eta}(x+h)-f_{\eta}(x) \leq 2^{\eta} h^{\eta}$.

For $x=0$ we have

$$
f_{\eta}(0+h)-f_{\eta}(0)=h^{\eta}
$$

so for all $x \in[0,1]$ we have proved that $f_{\eta}(x+h)-f_{\eta}(x) \leq 2^{\eta} h^{\eta}$, so that $f_{\eta} \in$ Lip- η. Checking the difference $f_{\eta}(x+h)-f_{\eta}(x)$ for $x=0$ shows immediately that this function cannot be in any higher Lip- η^{\prime} (i.e. for $\eta^{\prime}>\eta$).
3. If a function $f \in C(\mathbb{T})$ is Lipschitz- α for some $\alpha>1$ show that the function is necessarily constant.

$$
|g(x)-g(y)| \leq|g(x)-g(x+\delta)|+|g(x+\delta)-g(x+2 \delta)|+\cdots+|g(x+(n-1) \delta)-g(y)|
$$

where $\delta=(y-x) / n$.

Solution: Following the hint, assuming g satisfies the inequality $|g(x+h)-g(x)| \leq M h^{\alpha}$,

$$
|g(x)-g(y)| \leq M n \delta^{\alpha}=M \frac{|y-x|}{\delta} \delta^{\alpha}=M|y-x| \delta^{1-\alpha}
$$

The upper bound can be made arbitrarily small be choosing n large so we have proved $g(x)=g(y)$ for arbitrary x, y.

Alternatively one can show that g is differentiable and that the derivative is 0 everywhere, just by applying the definition of the derivative.

