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Abstract. Suppose P is a symmetric convex polygon in the plane. We give an
algorithm, running in time polynomial in the number of sides of the polygon,
which decides if P can tile the plane by translations at some level (not neces-
sarily at level one; this is multiple tiling). The main technical contribution is a
polynomial time algorithm that selects, if this is possible, for each j = 1, 2, . . . , n
one of two given vectors e j or τ j so that the selection spans a discrete additive
subgroup.
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1. Multiple tiling by translations with a single tile
In this note we are discussing when a convex polygon can tile the plane by

translations with a lattice. A lattice in the plane is a discrete additive sub-
group which contains two linearly independent vectors. Equivalently a lattice
L ⊆ R2 is a linear image of Z2, L = AZd, where the matrix A is non-singular.

If P is a convex polygon and L is any subset of the plane then we say that P
tiles by translations with L if the translates

P + ℓ, (ℓ ∈ L),

cover almost every point of the plane (in the sense of Lebesgue measure) ex-
actly once. For instance, if P = [0, 1]2 is the unit square and L = Z2 then we do
indeed have tiling by translations. In this case the only points of the plane that
are not covered exactly once by the copies of P are the points on the boundaries
of these copies, clearly a set of Lebesgue measure zero.

If we restrict ourselves to P being a convex polygon it has long been known
that P has to be symmetric in order to be able to tile the plane. It is also known
that only parallelograms and symmetric hexagons admit tilings.

The problem becomes more interesting if one considers multiple tilings, i.e.,
tilings at higher level than 1: almost every point of the plane is covered the
same number of times by the translates of P. This number is called the level of
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the tiling. In this case many more convex polygons (again, they must be sym-
metric) admit multiple tilings. For instance, every symmetric convex polygon
whose vertices have rational coordinates admits multiple tiling by the lattice
Zd at some level (this is easily seen from Theorem 1.1 below).

It was Bolle [1] who first studied the question “when does a polygon tile
multiply with a given lattice”. Bolle’s characterization is the following as was
modified in [5].

Theorem 1.1. Let P be a convex polygon in R2, and L be a lattice in R2. Then
P+L is a tiling of the plane at some level if and only if P is centrally symmetric,
and for each pair of parallel edges e and e′ of P at least one of the following
conditions is satisfied:

• (A1) The translation vector, τ, such that e′ = e + τ, is in L, or
• (B1) e ∈ L and (B2) there exists t ∈ (0, 1) such that te + τ ∈ L.

It is, perhaps, worth noting that Theorem 1.1 is true for more general polyg-
onal domains. As shown in [5] this characterization is true for any polygonal
domain with the pairing property: for every edge of the polygon there is exactly
one other edge parallel to it and this edge has the same length and opposite ori-
entation. Every symmetric convex polygon clearly has this property but many
more polygonal domains do, even disconnected ones. See, for example, Fig. 1.

Figure 1. A polygonal domain with the pairing property. It is
easy to see that it tiles with a lattice at level 1.

Theorem 1.1 has been generalized in various ways [5, 4, 3, 6, 7].
In [7], in particular, B. Liu proves that every multiple translational tiling

by a convex polygon is necessarily periodic. It is also proved in [7] that if a
convex polygon admits a multiple translational tiling then it can also do so by
lattice translations. This means that if we care to answer the question “does
this convex polygon tile multiply by translations” then the answer will be the
same if we ask for lattice translations.

e2

e3

τ10

e1

e′1

Figure 2. The edges e1, e2, . . . and the corresponding translation
vectors τ1, τ2, . . . of a symmetric convex polygon.
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For a symmetric convex polygon P let us denote by

e1, e2, . . . , en, e′1, e
′
2, . . . , e

′
n

its edges, in counterclockwise order. By the symmetry of P edge e1 is parallel
to edge e′1, edge e2 to edge e′2 and so on. Denote also by

τ1, τ2, . . . , τn

the translation vectors needed to carry e1 to e′1, e2 to e′2, etc. In other words
e′j = e j + τ j. See Fig. 1.

It is mentioned in [7] that if one tries to directly use Theorem 1.1 in decid-
ing if a given polygon tiles multiply by some lattice, one gets an exponential
algorithm, due to the fact that one has to decide for each pair of opposite edges
which of the two conditions in Theorem 1.1 holds. Indeed, as it is stated in [7],
one has to find a subset J ⊆ [n] = {1, 2, . . . , n} such that

(1.1) span Z
{
τ j, e j′ : j ∈ J, j′ < J

}
is a lattice, or show that no such subset exists. (Here the set J corresponds
to the indices for which the alternative (A1) of Theorem 1.1 holds; see §2.2.)
Clearly, if one tries all possible such J one gets an exponential time algorithm.
The author then proceeds in [7] to give an alternative, polynomial time algo-
rithm that decides if a given symmetric convex polygon can tile multiply by
translations with some lattice.

It is the purpose of this note to show a polynomial time algorithm for this
question that is based directly on Theorem 1.1, showing, in effect, that the
selection of J ⊆ [n] such that (1.1) is true can be done in polynomial time. The
algorithm we present is not simpler or faster than that given in [7]. The main
technical contribution of this note is the selection algorithm in §2.2, which is
perhaps of independent interest.

2. The algorithm
2.1. The computational model. In view of the fact, mentioned in the pre-
vious section and easily derivable from Theorem 1.1, that every symmetric
polygon with rational vertices admits a multiple lattice tiling, we have to be
careful to state exactly what kind of computational model we are assuming. It
makes no sense, for instance, to assume that the coordinates of all our vertices
are rational numbers (which would be the most natural thing, in terms of rep-
resentation of a number in the computer) as then the answer would always be
yes. So we have to allow for more general numbers in our model.

The simplest, though still unrealistic, model would be to assume that we can
operate on arbitrary real numbers and that we can do arithmetic in constant
time. It turns out that even this is not enough. It is important, as will be clear
in the next section, to be able to tell when a number is rational.

For example, we will repeatedly have to decide if a given collection of vectors
generates a discrete subgroup of R2 or not. This is easily done in polynomial
time in our model. Pick first one or two of these vectors which form a R-basis
of the R-vector space that this collection generates. For each other vector then
check that its coefficients with respect to the chosen basis are rational. All
that is needed for the above is Gaussian elimination and in fixed dimension.

For simplicity we will carry out our analysis below using the model described
above: arbitrary real numbers, constant time arithmetic operations, and we
can tell in constant time if a number is rational. Then, we will explain how all
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our algorithms remain in polynomial time if we operate in the real-life compu-
tation model, of finite sized integers, where arithmetic operations take time
that depends polynomially on the number of digits.

2.2. Selecting the es and the τs that form a discrete group. The next
theorem is the main computational result of this note and tells us that the
selection of the indices j for which conditions (A1) or (B1) hold can indeed be
carried out in polynomial time. A little more work then, in §2.3, will manage
to satisfy condition (B2) of Theorem 1.1 as well.

Theorem 2.1. Suppose e1, . . . , en ∈ R2 are non-zero and pairwise non-parallel,
and similarly for τ1, . . . , τn ∈ R2. We are seeking a set of indices

J ⊆ [n] = {1, 2, . . . , n}
such that the group

(2.1) span Z
{
τ j, e j′ : j ∈ J, j′ ∈ [n] \ J

}
is discrete. We can find such a J in polynomial time or decide that it does not
exist.

Proof. For J ⊆ [n] write

E(J) = span Z
{
e j : j ∈ J

}
, T(J) = span Z

{
τ j : j ∈ J

}
.

With this notation we have that (2.1) is precisely the group

T(J) + E([n] \ J).

There is nothing to prove for n ≤ 2, since span Z{e1, e2} is always a lattice, so
we are assuming from now on that n ≥ 3.

First we check if J = ∅ satisfies the requirements of the Theorem. This is
equivalent to E([n]) being a discrete group, and we can check this in polynomial
time as explained in §2.1.

Second we observe that we can easily find such a J of size 1, if it exists. Just
examine each such J and check if the set (2.1) is discrete. This clearly takes
polynomial time.

In the analysis that follows we therefore search for sets J with size at least
2. Equivalently, since all τ js are assumed non-parallel we are assuming that
T(J) contains two linearly independent vectors.

We now claim that if we can find J ⊆ [n], with |J| ≥ 2, such that (2.1) is discrete
not only we have that T(J) is discrete but we can also assume that J is maximal
with the property

(2.2) T(J) is discrete.

Let us prove this claim. We may of course assume that J is of maximum size
such that (2.1) is discrete. Then, if J is not maximal with respect to property
(2.2), then there is k ∈ [n] \ J such that T(J∪ {k}) ⊇ T(J) is discrete. This implies
that the group T(J) has finite index in T(J∪{k}) (remember that we are assuming
that T(J) contains two linearly independent vectors).

We now state a useful lemma.

Lemma 2.2. Suppose G1 ⊆ G and H are subgroups of a topological abelian
group. Suppose the group G1 has finite index in G and G1 +H is discrete. Then
G +H is also discrete.
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Proof. Since [G : G1] < ∞ it follows that G = G1+F where F is a finite set. Then
G+H = G1 +H+F and this is discrete as it consists of finitely many translates
of the discrete set G1 +H.

□

Writing J′ = [n] \ (J ∪ {k}) we claim that

T(J ∪ {k}) + E(J′)

is also discrete. This follows from Lemma 2.2 using

G1 = T(J), G = T(J ∪ {k}), H = E(J′).

This leads to contradiction with the fact that J was assumed of maximum size
and completes the proof of our claim that it is enough to search for a J which
is maximal with respect to property (2.2).

Lemma 2.3. Suppose A,B ⊆ [n] are both maximal with the property (2.2). Then
|A ∩ B| ≤ 1.

Proof. Suppose not, so that i, k ∈ A ∩ B, i , k. Write Γ = span Z{τi, τk}. Then
Γ is a lattice contained in T(A) ∩ T(B) and has finite index in both T(A) and
in T(B) (since these larger groups are also lattices). We may of course assume
that both A and B have at least three elements (otherwise one would contain
the other and one of them would not be maximal) and let then j ∈ B \A. Since
Γ ⊆ T(B) and T(B) is discrete it follows that Γ has finite index in

Γ +Zτ j = span Z
{
τi, τk, τ j

}
⊆ T(B).

From Lemma 2.2, with G1 = Γ, G = T(A), H = Zτ j, we obtain that T(A ∪ { j}) is
discrete, which contradicts the maximality of A.

□

By the observation above it is enough to search for a maximal set J such that
(2.1) is discrete. By Lemma 2.3 any two-element subset of such a maximal set
J determines J. Therefore the number of such J is O(n2). We can enumerate
them efficiently by starting with any set J of size two and add elements to it
that keep T(J) discrete. When we cannot do this any more we have found our
unique maximal set that corresponds to (contains) the initial two-element set
that we started from. For each maximal such J we only have to check that (2.1)
is discrete, which is doable in polynomial time.

The proof of Theorem 2.1 is now complete.

2.3. Deciding tiling. We divide the convex symmetric polygons P that tile
multiply into two classes according to the number of edge pairs for which con-
dition (A1) of Theorem 1.1 holds. Notice that since τ1 = e2 + e3 + · · · + en (if we
orient the vectors counterclockwise – refer to Fig. 1) it is impossible for (A1) to
hold for no index.

• Class A: For all lattices L for which P + L is a multiple tiling we have
that condition (A1) of Theorem 1.1 holds for exactly one index j.
• Class B: There exists a lattice L for which P+L is a multiple tiling and

for which condition (A1) of Theorem 1.1 holds for at least two indices.
To decide if P tiles multiply we first check if it is in Class A. If that fails we
check if it is in Class B.
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2.3.1. Deciding if P is in Class A. It is enough to test for all indices j = 1, 2, . . . , n,
if (assume for simplicity j = 1)

(I) L = span Z{τ1, e2, . . . , en} = span Z{e2, . . . , en} is a lattice,
(II) for j = 2, . . . , n the straight line τ j+Re j contains a point commensurable

with L, and
(III) for j = 2, . . . , n the vector τ j is incommensurable with L.

For a point p to be commensurable with L it is necessary and sufficient that
Zp + L is a discrete group. We have already described in §2.1 how we can test
this.

Suppose we tested condition (I) and it is true. Carry out a linear transfor-
mation so that L = Z2. We can now test if the straight line τ j +Re j contains a
rational point by first writing our line in the form y = ax+ b (or x = ay+ b) with
a ∈ Q (since (I) holds) and observing that this line contains a rational point if
and only if b ∈ Q.

2.3.2. Deciding if P is in Class B. Suppose P is Class B and the lattice L verifies
this property. Define J ⊆ [n] to consist of those indices j ∈ [n] for which τ j ∈ L.
We have |J| ≥ 2. By Theorem 1.1 it follows that for j′ ∈ [n] \ J we have that
e j′ ∈ L and also condition (B2) holds for each such e j′ for the lattice L. Therefore
T(J) + E([n] \ J) ⊆ L and this group is a lattice.

Let J′ ⊇ J be maximal with the property that T(J′) is discrete. It follows that
for all j′ ∈ [n] \ J′ we still have (B1) and (B2) holding for L. And we also have
T(J′) ⊇ T(J), with [T(J′) : T(J)] < ∞, since T(J) is a lattice, J containing at least
two elements. So

L′ := T(J′) + E([n] \ J) ⊇ L
is still a lattice by Lemma 2.2. It follows that condition (A1) holds for all j ∈ J′
with the lattice L′ in place of L, so that T(J′) ⊆ L′.

Assume now that j′ ∈ [n] \ J′. Then j′ < J as well and, by Theorem 1.1,
e j′ ∈ L ⊆ L′, so that (B1) holds for j′ and the lattice L′. Since L′ ⊇ L by Theorem
1.1 again we obtain that (B2) holds for j′ and the lattice L′ as well.

By the above we conclude that, at the cost of enlarging the lattice L, we may
assume that the set

J =
{
j ∈ [n] : τ j ∈ L

}
is maximal with respect to the property that T(J) is discrete. As reasoned in
the proof of Theorem 2.2 such a J is determined by two of its points, so there is
O(n2) possible such sets J. Our algorithm for determining then if P is in Class
B is the following.

1. For each set J ⊆ [n] that is maximal with respect to the property that
T(J) is discrete:

2. if L = T(J) + E([n] \ J) is not discrete skip this set J
3. if it is discrete check that for each j′ ∈ [n] \ J the line τ j′ + Re j′

contains a point commensurable with L. If this happens then this
set J is good and P is in Class B tiling with a superlattice of L.

To effect the loop in 1. we proceed as in the proof of Theorem 2.2: for every
pair of indices in [n] we obtain the unique maximal J containing the indices by
augmenting them as long as the group they generate remains discrete. And
the checks in 3. are done as described in §2.3.1.

2.4. A realistic computational model. We now change to a more realistic
computational model. One way this can be done is to assume that all our
numbers will be in the fixed fieldQ(a), where a is an algebraic number of degree
d and known minimal polynomial A(X) ∈ Q[X]. This avoids the trivial field Q,
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where all polygons admit lattice tilings. Every one of our numbers can be
represented in the form

x = x0 + x1a + x2a2 + · · · + xd−1ad−1, x j ∈ Q.
Addition and subtraction of numbers work componentwise. Multiplication is
multiplication of polynomials modulo A(X) and to find 1/x we use the extended
Euclidean algorithm [2, Chapter 3]. It is also clear, when x is given in this rep-
resentation, if it is rational or not. All these operations take time polynomial
in the size of the numbers involved, so our algorithm remains polynomial time
in this model as well.
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