
TILING, SPECTRALITY AND APERIODICITY OF
CONNECTED SETS

RACHEL GREENFELD AND MIHAIL N. KOLOUNTZAKIS

Abstract. Let Ω ⊂ Rd be a set of finite measure.
The periodic tiling conjecture suggests that if Ω tiles
Rd by translations then it admits at least one peri-
odic tiling. Fuglede’s conjecture suggests that Ω ad-
mits an orthogonal basis of exponential functions if
and only if it tiles Rd by translations. Both conjec-
tures are known to be false in sufficiently high dimen-
sions, with all the so-far-known counterexamples be-
ing highly disconnected. On the other hand, both con-
jectures are known to be true for convex sets. In this
work we study these conjectures for connected sets.
We show that the periodic tiling conjecture, as well
as both directions of Fuglede’s conjecture are false
for connected sets in sufficiently high dimensions.
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1. Introduction

1.1. Trading dimension for freedom in tilings by
translation. Tiling by translation is a fascinating sub-
ject with connections to several parts of analysis and
number theory, as well as, of course, geometry. Re-
stricting the motions of the tile to translations imposes a
stronger structure on tilings compared with tilings where
the tile (or tiles) are allowed a greater group of motions.
Tilings by translation often have, or are conjectured to
have, properties that more general tilings do not have.
This paper focuses on two of them: periodicity and spec-
trality. In the first we seek to understand if a transla-
tional tile must also be able to tile in a periodic manner,
a property known to fail for tilings with a larger group of
motions. In the second the Fuglede conjecture identifies
domains that tile with domains that admit an orthogonal
basis of exponentials for their L2 space.

It has turned out that both these properties cease to
hold when the dimension is sufficiently large. It appears
that the extra freedom afforded by high dimension com-
pensates for the rigidity imposed by restricting to trans-
lations. It is exactly this phenomenon that we exploit in
this paper: increasing the dimension allows us to obtain
more well behaved counterexamples to the Periodic Tiling
Conjecture and to the Fuglede Conjecture, namely it al-
lows us to obtain connected sets as counterexamples.

1.2. Tilings and periodicity. The study of the struc-
ture of tilings goes back to Hilbert’s 18th problem. This
problem was later generalized to the well known “ein-
stein1 problem”, which asks about the existence of a sin-
gle shape which tiles the space but does so only in a
non-periodic way. Such a tile is called “aperiodic” or an

1Here, the word “einstein” refers to “one stone” in German.
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“einstein”. Socolar–Taylor [ST12] constructed a planar
aperiodic tile which tiles the plane by translations, ro-
tations and also reflections, but this tile is highly dis-
connected. The Socolar–Taylor construction was later
extended to the Schmitt–Conway–Danzer tile: A con-
vex three-dimensional domain which tiles R3 aperiodi-
cally by translations, rotations and reflections [SCD93].
The einstein problem for planar connected tiles remained
open, until very recently, when “The Hat” tile was
discovered by Smith–Myers–Kaplan–Goodman-Strauss
[SMKGS23a]. Moreover, in a subsequent paper, the same
authors constructed a connected planar “einstein” which
tiles the plane aperiodically by translations and rotations
only (no reflections) [SMKGS23b]. It is known, however,
that there is no translational einstein which is a topolog-
ical disk [BN91, Ken92]. It was recently shown [GT22]
that aperiodic translational tiles exist in high dimen-
sions. The first part of this paper (Section 2) is devoted to
the question whether there are any aperiodic connected
translational tiles.

Let Ω ⊂ Rd be a measurable set of finite, positive mea-
sure. We call Ω a translational tile of Rd if there exists a
(countable) set A ⊂ Rd such that the family of translates
of Ω along the elements of A:

Ω+ a, a ∈ A,

covers almost every point in Rd exactly once. The set A is
then called a tiling of Rd by Ω, and we write:

Ω ⊕ A = Rd.

Similarly, a finite subset F ⊂ Zd is a translational tile
of Zd if there exists A ⊂ Zd such that the sets F+ a, a ∈ A,
form a partition of Zd, namely: F ⊕ A = Zd. In this case,
A is called a tiling of Zd by F.

For G = Rd or G = Zd, a tiling A in G is said to be
periodic if there exists a latticeΛ, a discrete subgroup of G
containing d linearly independent elements, such that A
is invariant under translations by any point in this lattice;
namely

A + λ = A, λ ∈ Λ
for some co-compact subgroup Λ of G. A translational tile
of G is called aperiodic if none of the tilings that it admits
are periodic.
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In the 60’s, H. Wang [W75] conjectured that any tiling,
by an arbitrary finite number of tiles, inZ2 admits a peri-
odic tiling. Wang also showed that if this conjecture were
true, then the question whether a given collection of finite
subsets of Z2 tiles would be algorithmically decidable:
there would be an algorithm that provides an answer to
this question in finite time. A few years later, Berger
proved [B64, B66] a negative answer to both questions.
He constructed an aperiodic tiling with 20,426 tiles: this
tile-set admits tilings but none of these tilings are peri-
odic. Then, using this construction, he also proved that
tilings by multiple tiles inZ2 are undecidable. Since then,
there has been an extensive effort to reduce the possible
size of aperiodic and undecidable tile-sets, see [GT21, Ta-
ble 2]. Recently, in [GT21], it was proved that tilings with
two tiles are undecidable in high dimensions.

As for translational tiling by a single tile, the celebrated
periodic tiling conjecture [GS87,LW96] asserts that there
are no aperiodic translational tiles:
Conjecture 1.1 (The periodic tiling conjecture). Let Ω ⊂
Rd be a set of finite, positive measure. If Ω tiles Rd by
translations then it must admit at least one periodic tiling.

The periodic tiling conjecture is known to hold in R
[LW96], inR2 for topological disks [BN91,Ken92] and also
for convex domains in all dimensions [M80, V54]. How-
ever, very recently the periodic tiling conjecture was dis-
proved in high dimensions [GT22].

Since the counterexample constructed in [GT22] is dis-
connected, a natural followup question is whether the pe-
riodic tiling conjecture is true for connected sets2 in all
dimensions, see [GT22, Question 10.3].

Our first result gives a negative answer to this ques-
tion:
Theorem 1.2. For sufficiently large d, there exists a set Ω
in Rd of finite measure which is the closure of its interior,
such that:

(i) Ω is connected.
(ii) Ω tiles Rd by translations.

2To avoid trivial constructions, e.g., adding zero-measure line seg-
ments between connected components to make the set connected
while trivially preserving aperiodicity, we require that the connected
set is also the closure of its interior.
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(iii) If Ω ⊕ A = Rd then A is non-periodic.

In fact, we show that any d-dimensional disconnected
counterexample to the periodic tiling conjecture Ω gives
rise to a (d + 2)-dimensional counterexample Ω′, which is
connected.

The proof is done by first showing that certain type of
operations on a given finite set F ⊂ Zd preserve aperi-
odicity, see Theorem 2.1. This latter theorem is general,
and might be of independent interest. Then, we use this
theorem to construct (d + 2)-dimensional “folded briges”
between the connected components of a given aperiodic
tile F ⊂ Zd, while preserving its aperiodicity. Finally, we
inflate the obtained (d + 2)-dimensional aperiodic tile, to
get an aperiodic connected tile in Rd+2.

1.3. Tiling and spectrality. A measurable set Ω ⊂ Rd

of positive, finite measure is called spectral if there is a
frequency set Λ ⊂ Rd such that the system

E(Λ) B {e2πiλ·x}λ∈Λ
constitutes an orthogonal basis for L2(Ω). In this case, the
set Λ is called a spectrum for Ω.

The study of spectral sets goes back to Fuglede [F74],
who in 1974 conjectured that spectral sets are exactly the
ones which tile by translations:

Conjecture 1.3 (Fuglede’s spectral sets conjecture). A
set Ω ⊂ Rd of finite, positive measure is spectral if and
only if it tiles space by translations.

Fuglede’s conjecture motivated an extensive study of
the nature of the connection between the two proper-
ties: The analytic property of spectrality and the geo-
metric property of tiling by translations. Throughout
the years many positive results towards the conjecture
have been obtained, see [KM10, Section 4] and the ref-
erences mentioned there. In particular, the conjecture
is known to hold for convex domains in all dimensions
[IKT03, GL17, LM19]. Nevertheless, in 2004, Tao dis-
covered that there exist counterexamples to Fuglede’s
conjecture. In [T04], he constructed examples of sets
Ω ⊂ Rd, for any d ≥ 5, which are spectral, but can-
not tile by translations. Subsequently, by an enrichment
of Tao’s approach, examples of translational tiles which
are not spectral were also constructed, and eventually
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the dimension in these examples was reduced down to
d ≥ 3 [KM1, KM2] (see [KM10, Section 4] for more ref-
erences). All these examples arise from constructions of
counterexamples to the finite Abelian group formulation
of Fuglede’s conjecture. Thus, when inflated to Euclidean
space Rd, d ≥ 3, each of the known counterexamples is a
finite union of unit cubes centered at points of the integer
lattice Zd. However, since in all the previously known ex-
amples the arrangement of the cubes is very sparse and
disconnected, Fuglede’s conjecture for connected sets3 re-
mained open. In this paper we show that there are con-
nected counterexamples to both directions of the conjec-
ture.

In Section 3, from a given disconnected set in Rd which
is spectral and does not tile, we construct a connected set
in Rd+2 which is spectral and does not tile:

Theorem 1.4. For d ≥ 5, there exists a setΩ in Rd of finite
measure which is the closure of its interior, such that:

(i) Ω is connected.
(ii) Ω is spectral.

(iii) Ω does not tile Rd by translations.

Similarly to the construction in Section 2, this is done
by constructing “folded bridges” in Rd+2 between the con-
nected components of a given spectral set in Rd which is
not a tile. We prove in Theorem 3.1 that this type of con-
struction preserves spectrality as well as the tiling prop-
erties of the original set.

In Section 4, we construct, from a given disconnected
setΩ ⊂ Rd which tiles and is not spectral, a connected set
in Rd̃, d̃ = d̃(Ω) > d, which tiles and is not spectral:

Theorem 1.5. For sufficiently large d, there exists a set Ω
in Rd of finite measure which is the closure of its interior,
such that:

(i) Ω is connected.
(ii) Ω tiles Rd by translations.

(iii) Ω is not spectral.

3As before, to avoid trivial constructions, e.g., adding zero-
measure paths between connected components to make the set con-
nected while trivially preserving its tiling and spectral properties, we
require that the connected set is equal to the closure of its interior.
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The proof is done by iteratively constructing high di-
mensional “spiral bridges” between the connected compo-
nents of Ω, a given finite union of unit cubes which tiles
and is not spectral. In Theorem 4.1 we prove that this
type of construction preserves the non-specrality as well
as the tiling properties of the original set.

Theorems 3.1 and 4.1 give a range of operations on a
set that preserve its spectral and tiling properties. These
theorems may, therefore, be of independent interest.

1.4. Notation and preliminaries. Throughout this pa-
per:

• We denote the Euclidean norm by
∥ · ∥ : Rd → [0,∞).

• We denote the Lebesgue measure of a set Ω ⊂ Rd

by |Ω|, and for a set F ⊂ Zd, |F| denotes the cardi-
nality of F, or, equivalently, the counting measure
of F.
• For a number r ∈ R, ⌊r⌋ ∈ Z denotes the largest in-

teger which is smaller or equal to r, and ⌈r⌉ denotes
the smallest integer which is greater or equal to r.
• For sets A,B in a group G, we use the notation A+B

for Minkowski addition:
{a + b : a ∈ A, b ∈ B}

of A and B. For A ⊂ G and B ⊂ G′ the set A × B ⊂
G × G′ is the Cartesian product:

{(a, b) : a ∈ A, b ∈ B}
of A and B.
• For a function f : Rd → C we denote

{ f = 0} B {ξ ∈ Rd : f (ξ) = 0}.

1.4.1. Let Λ ⊂ Rd be a countable set and let Ω ⊂ Rd be
measurable with positive, finite measure. Observe that
the system E(Λ) = {e2πiλ·x}λ∈Λ is orthogonal in L2(Ω) if and
only if

(1) (Λ −Λ) \ {0} ⊂ {1̂Ω = 0}.

The upper density of Λ is defined as the quantity

lim sup
R→∞

sup
x∈Rd

|Λ ∩ (x + [−R/2,R/2]d)|
Rd
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and the lower density of Λ is defined as

lim inf
R→∞

sup
x∈Rd

|Λ ∩ (x + [−R/2,R/2]d)|
Rd

.

If the upper density of Λ is equal to its lower density,
we denote both quantities by densΛ and say that Λ has
density densΛ.

The following proposition is well known in the study of
spectral sets. It will be used in the proofs of Theorems 3.1
and 4.1.

Proposition 1.1. Let Ω ⊂ Rd be a measurable set of posi-
tive, finite measure. The following are equivalent:

(i) Ω is spectral.
(ii) There exists Λ ⊂ Rd of lower density at least |Ω|

such that (1) is satisfied.
Moreover, if Λ ⊂ Rd is a spectrum forΩ then Λ satisfies (1)
and densΛ = |Ω|.

The proof of Proposition 1.1 follows by combining [K04,
Section 3.1] or [GL18, Lemma 3.1] with [K16, Theorem
1].

1.5. Acknowledgment. R.G. was supported by the Na-
tional Science Foundation grants DMS-2242871, DMS-
1926686 and by the Association of Members of the In-
stitute for Advanced Study. M.K. was supported by the
Hellenic Foundation for Research and Innovation, Project
HFRI-FM17-1733 and by University of Crete Grant 4725.
We thank Terence Tao for helpful suggestions to improve
the exposition of the paper. We are grateful to Sha Wu of
Hunan University for pointing out an error in the origi-
nal “folded bridge” construction which led us to a much
simplified “folded bridge”.

2. Aperiodic connected tiles

Theorem 2.1 (Aperiodicity preserving operation). Let F
be a finite subset of Zd. Define the finite set

X =
{
(v j, s j) : j = 0, 1, . . . , n − 1

}
⊆ Rd+k

where v0, . . . , vn−1 ∈ Zd are arbitrary and s0, . . . , sn−1 are n
distinct points in Zk such that

S = {s j : j = 0, 1, . . . , n − 1}
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tiles Zk by translations. Let F′ =
(
F × {0}k

)
⊕ X. Then F′ is

an aperiodic tile in Zd+k if F is an aperiodic tile of Zd.

Remark 2.1. If H,K are subgroups of G then [H : H∩K] ≤
[G : K]. This implies that if Λ ⊆ Zm ×Zn is a lattice then
Λ ∩Zm × {0}n is a lattice in Zm × {0}n.

Proof of Theorem 2.1. Suppose that F ⊂ Zd is an aperiodic
tile. Suppose, towards a contradiction, that F′ is not ape-
riodic. Clearly, F′ tilesZd+k. Indeed, by assumption, there
is a tiling A ⊂ Zd of Zd by F, and a tiling T ⊂ Zk of Zk by
S; by construction of F′ we then have that

A′ = A × T

is a tiling of Zd+k by F′. Therefore, our assumption that F′
is not aperiodic implies that there exists a periodic tiling
A′ of Zd+k by F′ with period lattice G′ ⊆ Zd+k. Define V =
Zd × {0}k and

G = G′ ∩ V.
It follows from Remark 2.1 that G is a lattice in V. Define
also the subset of V

(2) A B (A′ + X) ∩ V.

Since for every a′ ∈ A′, x ∈ X with a′ + x ∈ V and every
g ∈ G we have a′ + x + g = (a′ + g) + x = a′′ + x for some
a′′ ∈ A′, we conclude that A + G = A, so that A is periodic
in V. Thus, to arrive at a contradiction, it is enough to
prove that F × {0}k ⊕ A = V is a tiling. Observe that for
every a′ ∈ A′

(F′+ a′)∩V = (F×{0}k+X+ a′)∩V = F×{0}k+
(
(X+ a′)∩V

)
,

since F × {0}k ⊆ V. Thus, since
(F′ + a′) ∩ V, a′ ∈ A′

form a tiling of V, so do the translates of F×{0}k by all the
points x + a′ ∈ V, with x ∈ X, a′ ∈ A′, which is exactly the
set of translates A defined in (2). □

Definition 2.1. Let B ⊂ Zd. A connected component of
B is a subset C of B such that C + [0, 1]d is a connected
component of B + [0, 1]d in Rd.

If B has a single connected component, we say that B is
connected.

Remark 2.2. In our definition two points a, b ∈ Zd are
connected to each other if and only if |ai − bi| ≤ 1, for all



TILING AND APERIODICITY OF CONNECTED SETS 10

i = 1, 2, . . . , d. In other words each point in Zd has 3d − 1
neighbors.

We could strengthen the notion of connectivity for sub-
sets of Zd to demand a, so-called, 2d-connected path from
any point of the set to any other (such a path is allowed to
go from any point x ∈ Zd to any of its 2d neighbors along
the d coordinate axes). Everything in this paper would
work essentially the same.

2.1. Folded bridge construction in Zd. Let F ⊂ Zd be
finite with m + 1 > 1 connected components C0,C1, . . . ,Cm.
Pick m + 1 points a j ∈ C j with a0 = 0 for simplicity. Then
there exists a path v0, . . . , vn−1 ∈ Zd, where each v j is a
neighbor of or equal to v j±1, and

v0 = a0 = 0, vn−1 = am

and each a j, j = 0, 1, . . . ,m, belongs to the path
γ : v0, v1, . . . , vn−1.

Thus the path v j connects all connected components of F.
See Fig. 1.

C0

a0

C1

a1

C2

a2

γ

γ

Figure 1. The path γ, consisting of the
points v0, . . . , vn−1 visits all connected compo-
nents of F.
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Define the sequence S =
{
s j : j = 0, 1, . . . , 2n − 1

}
⊆ Z2,

as follows.

s0 = (0, 0), s1 = (1, 0), . . . , sn−1 = (n − 1, 0),
sn = (n − 1, 1), sn+1 = (n − 2, 1), . . . , s2n−2 = (1, 1), s2n−1 = (0, 1).

(3)

as in Figure 2.

s0 s1
sn−1

sns2n−1

Figure 2. The sequence S = {s0, . . . , s2n−1} ⊆
Z2. There are 2(m − 1) rows in this array,
each of length n.

From F ⊆ Zd we construct the set F′ ⊆ Zd+2 by
F′ = F × {0}2 + X

where
X = {X0,X1, . . . ,X2n−1}
= {(0, s0), (0, s1), (0, s2), . . . , (0, sn−1),

(v0, sn), (v1, sn+1), . . . , (vn−1, s2n−1)}.
Notice that this is a disjoint sum since the s j are all dif-
ferent (so that |F′| = |F| · 2n).

Lemma 2.1. The set X is connected in Zd+2.

Proof. We first observe that for j = 0, 1, . . . , n− 2 the point
X j = (0, j, 0) is connected to X j+1 = (0, j + 1, 0) since they
only differ at one coordinate and only by 1. We also have
that Xn−1 = (0,n − 1, 0) is connected to Xn = (0,n − 1, 1)
(remember v0 = a0 = 0) since they only differ at the last
coordinate by 1. Finally, if j ≥ n then X j = (v j−n, j, 1) is
connected to X j+1 = (v j−n+1, j + 1, 1) since their first d co-
ordinates form two connected points in Zd (since v j−n is
connected to v j−n+1) and they also differ by 1 at the d + 1
coordinate. □

We imagine a copy of Zd “hanging” from each of the 2n
cells in Figure 2, and, as we move from left to right and
then left again, the copy of F in that copy of Zd is trans-
lated by the vectors 0, . . . , 0︸  ︷︷  ︸

n

, v0, v1, . . . , vn−1.
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We call this construction a “folded bridge” between the
connected components C0,C2, . . . ,Cm of F, giving F′. See
Figure 3 for a visual illustration of the notion for the case
m = 2 (three connected components).

Figure 3. How F′ is constructed from F. A
folded bridge on the set F (blue is F × [0, 1]2)
connecting its three connected components.
The red line is the ambient space for F,
namely Zd.

Lemma 2.2. F′ is connected in Zd+2.

Proof. We first observe that

F′ = F × {0}2 + X =
m⋃

j=0

(C j × {0}2 + X),

and each C j × {0}2 + X is connected from Lemma 2.1 and
the fact that the sum of two connected sets is connected.
It remains to show that the connected sets C j × {0}2 + X
connect to each other as well. We show that for j ≥ 1 the
set C j×{0}2+X connects to C0×{0}2+X. Indeed, there exists
k ∈ {0, 1, . . . , n − 1} such that a j = vk (by the construction of
the path v j, j = 0, . . . , n − 1). Then (recall that a0 = 0)

(a j, sn+k) = (a0 + vk, sn+k) ∈ C0 × {0}2 + X

and
(a j, sn−k−1) ∈ C j × {0}2 + X.

These two points have the same first d+1 coordinates and
differ only in the last coordinate where the first point has
1 and the second has 0. (The point sn+k is right above sn−k−1
in Fig. 2.) □
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By Theorem 2.1 we have that F′ is aperiodic in Zd+2 if F
is aperiodic in Zd.

Using this, we can finally prove Theorem 1.2:

Proof of Theorem 1.2. By [GT22, Corollary 1.5], if d is suf-
ficiently large, we can choose a finite F ⊂ Zd which is
an aperiodic translational tile. By applying the “folded
bridge” construction above we obtain a set F′ ⊂ Zd+2 which
is connected, and is also an aperiodic translational tile
(by Theorem 2.1, since S is a rectangle). Let Rd+2 be the
“dented (d+2)-dimensional cube” constructed in the proof
of [GT22, Lemma 2.2]. Observe that by construction of
Rd+2, the set F′ + Rd+2 ⊂ Rd+2 is connected if and only if
F′ + [0, 1]d+2 ⊂ Rd+2 is connected; thus, since F′ is con-
nected in Zd+2 in the sense of Definition 2.1, F′ + Rd+2 is
connected in Rd+2. Moreover, the argument in the proof
of [GT22, Theorem 2.1] gives that F′ + Rd+2 is aperiodic
in Rd+2, since F′ is aperiodic in Zd+2. Finally, note that
F′ +Rd+2 ⊂ Rd+2 is equal to the closure of its interior. The-
orem 1.2 now follows, with Ω being F′ + Rd+2. □

3. Connected spectral sets that do not tile

The ultimate goal of this section is to prove Theorem
1.4. We begin with the following general theorem, which
shows that certain operations allow to construct, from a
given spectral set Ω, other sets that are spectral as well
and that preserve the tiling property of the original set
Ω.

Theorem 3.1 (Spectrality and tiling preserving opera-
tions). Let Ω be a bounded, measurable set in Rd. Define
the finite set

X =
{
(v j, s j) : j = 0, 1, . . . , n − 1

}
⊆ Rd+k

where v0, . . . , vn−1 ∈ Rd and s0, . . . , sn−1 are n distinct points
in Zk such that

S = {s j : j = 0, 1, . . . , n − 1}

tiles Zk by translations. Let Ω′ =
(
Ω × [0, 1]k

)
⊕ X. Then:

(i) Ω′ tiles Rd+1 by translations if and only if Ω tiles
Rd by translations.

(ii) If Ω ⊂ Rd and S + [0, 1]k ⊂ Rk are spectral, then Ω′
is spectral in Rd+k.
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Proof of Theorem 3.1 (i). If A⊕Ω = Rd then A′⊕Ω′ = Rd+k,
where

A′ = A × T

and T ⊂ Zd is a tiling of Zk by S. Conversely, if Ω′ ⊕ A′ =
Rd+k then, by a similar argument as in the proof of Theo-
rem 2.1, the set (2) is a tiling of Rd × {0}k by Ω × {0}k. □

Proof of Theorem 3.1 (ii). Let Λ ⊂ Rd be a spectrum for Ω
and Σ ⊂ Rk be a spectrum for S+[0, 1]k, then the Cartesian
product set

Λ′ := Λ × Σ = {(λ, σ) ∈ Rd+k : λ ∈ Λ, σ ∈ Σ}

defines an orthogonal system

E(Λ′) = {e2πiλ′·x}λ′∈Λ′

in L2(Ω′). Indeed, let τ = (λ, σ), τ′ = (λ′, σ′) be distinct
points in Λ′. By (1), we need to show that

(4) 1̂Ω′(τ′ − τ) = 0.

Observe that by the definition of Ω′ we have

1Ω′(w1, . . . ,wd+k) = 1Ω(w1, . . . ,wd)·

1[0,1]k(wd+1, . . . ,wd+k) ∗
∑

x∈X

δx

 (w1, . . . ,wd+k).

Therefore

1̂Ω′(ξ1, . . . , ξd+k) = 1̂Ω(ξ1, . . . , ξd)1̂[0,1]k(ξd+1, . . . , ξd+k)·(5) ∑
x∈X

e2πix·(ξ1,...,ξd+k)

 .
If λ′, λ are distinct in Λ, then by (1)

1̂Ω(λ′ − λ) = 0,

since Λ is a spectrum for Ω, and so, in particular E(Λ) is
orthogonal in L2(Ω). Thus, in this case by (5) we see that
(4) is satisfied. Otherwise, λ′ −λ = 0 and σ, σ′ are distinct
in the spectrum Σ of S + [0, 1]k, so by (1)

̂1S+[0,1]k(σ′ − σ) = 0.
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By (5) we then have:

1̂Ω′(τ′ − τ) = 1̂Ω(0)1̂[0,1]k(σ′ − σ)
∑

x∈X

e2πix·(0,σ′−σ)


= |Ω|1̂[0,1]k(σ′ − σ)
∑

s∈S

e2πis·(σ′−σ)


= |Ω| ̂1S+[0,1]k(σ′ − σ) = 0.

Therefore (4) is satisfied in this case as well, and hence
E(Λ′) is orthogonal in L2(Ω′), as claimed. Now, observe
that

densΛ′ = densΛ × Σ = densΛ · densΣ.

Thus, as Λ is a spectrum for Ω and Σ is a spectrum for
S + [0, 1]k, by Proposition 1.1, we have

densΛ′ = |Ω||S + [0, 1]k| = |Ω|n = |Ω′|.
A further application of Proposition 1.1 then gives thatΩ′
is spectral. □

3.1. Folded bridge construction in Rd. Let Ω be a
bounded, open set in Rd with m + 1 > 1 connected com-
ponents C0,C1, . . . ,Cm. Pick m + 1 points a j in the interior
of C j each and assume for simplicity a0 = 0. Let K be large
enough so that if δi =

1
K (ai+1 − ai), i = 0, . . . ,m − 1, we have

(6) Ci ∩ (Ci + δ j) , ∅ for all i, j.

Let n = mK+1 and define the sequence v j, j = 0, 1, 2, . . . , n−
1, to consist of the n values

a0, a0 + δ0, a0 + 2δ0, . . . , a0 + (K − 1)δ0,

a1, a1 + δ1, a1 + 2δ1, . . . , a1 + (K − 1)δ1,

a2, a2 + δ2, a2 + 2δ2, . . . , a2 + (K − 1)δ2,

· · ·
am−1, am−1 + δm−1, am−1 + 2δm−1, . . . , am−1 + (K − 1)δm−1,

am

or:
v j = a j̃ + ( j − Kj̃)δ j̃,

where j̃ =
⌊

j
K

⌋
, so that, in particular, all points a0, a1, . . . , am

belong to the sequence v j, j = 1, . . . , n − 1. We then define

Ω1 = Ω × [0, 1]2 + X
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where
X = {X0,X1, . . . ,X2n−1}
= {(0, s0), (0, s1), (0, s2), . . . , (0, sn−1),

(v0, sn), (v1, sn+1), . . . , (vn−1, s2n−1)},
where s j ∈ R2 is the sequence defined in (3) and shown in
Figure 2. Notice that this is a disjoint sum up to measure
zero since the s j are all different.

Let us now see why the set Ω1 is connected. The first
observation is that the sets C j × [0, 1]2 are connected. In
other words, for every ω1, ω2 ∈ Ω and x1, x2 ∈ [0, 1]2

(7)
ω1, ω2 connected in Ω =⇒ (ω1, x1), (ω2, x2) connected4 in Ω×[0, 1]2.

When moving from one cell of Figure 2 to the next, the
two sets

Ci × [0, 1]2 + (v j, s j) and Ci × [0, 1]2 + (v j+1, s j+1)

are connected to each other because they have a non-
empty intersection, by (6) and the fact that s j and s j+1 dif-
fer in one coordinate only and exactly by 1, so s j − s j+1 ∈
[−1, 1]2, the latter set being the difference set of [0, 1]2.

Hence, when we move across one cell in Figure 2, follow-
ing the path, the connected components are either main-
tained or merging, so new connected components are not
created along the way. Merging happens when we are
moving on the upper row (see an illustration in Figure 3).
Take j ≥ 1 and let vk be such that a j = vk. Then

(a j, sn+k) = (a0 + vk, sn+k) ∈ C0 × [0, 1]2 + X

and
(a j, sn−k−1) ∈ C j × [0, 1]2 + X.

At that point the set C j × [0, 1]2 +X gets connected to C0 ×
[0, 1]2 + X, so, in the end we are left with one connected
set.

By Theorem 3.1 we have:

(i) Ω1 tiles Rd+2 by translations if and only if Ω tiles
Rd by translations.

(ii) Ω1 is spectral in Rd+2 if Ω is spectral in Rd.

Using this, we can now prove Theorem 1.4:

4We say that two points are connected in a set if they both belong
to the same connected component of the set.
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Proof of Theorem 1.4. By [T04, Theorem 1.2] and [KM1,
Section 3], if d ≥ 3, we can choose a finite union of closed
unit cubes Ω ⊂ Rd which is spectral but does not tile by
translations. Hence, by applying the construction above
we obtain a set Ω1 ⊂ Rd+2 which is connected, spectral
and does not tile Rd+2 by translations. Moreover, observe
that by construction, if Ω is a finite union of closed d-
dimensional unit cubes, Ω1 is a finite union of closed
(d + 2)-dimensional unit cubes. In particular, Ω1 is the
closure of its interior. This proves Theorem 1.4. □

4. Connected translational tiles that are not
spectral

LetΩ be a bounded measurable set in Rd and let v ∈ Rd

be a vector. Let u = (v, 1) ∈ Rd+1, n ≥ 1. We say that the
set
(8) Ω′ B Ω × [0, 1] + {0,u, 2u, . . . , (n − 1)u}
is a stacking ofΩ. See Figure 4 for a visual illustration of
the notion.

Figure 4. A stacking Ω′ of the set Ω in one
dimension higher.

Note that by Theorem 3.1 (ii) we have that a stacking
Ω′ of Ω tiles Rd+1 by translations if and only if Ω tiles Rd

by translations.
In addition, we have the following:

Theorem 4.1. Let Ω be a measurable set in Rd of finite
measure. Suppose that Ω′ is a stacking of Ω. If Ω′ ⊂ Rd+1

is spectral then Ω ⊂ Rd is spectral.
Remark 4.1. Note that Theorem 3.1(ii) gives that the
converse is also true: If Ω ⊂ Rd is spectral then Ω′ ⊂ Rd+1
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is spectral. However, in this section we will only use the
direction in the statement of Theorem 4.1.

Proof. We have
1Ω′ = 1Ω×[0,1] ∗ (δ0 + δu + · · · + δ(n−1)u)

so, when u · ξ < Z, with ξ = (ξ1, ξ2, . . . , ξd+1) ∈ Rd+1, we
have

1̂Ω′(ξ) = 1̂Ω(ξ1, . . . , ξd)1̂[0,1](ξd+1)

 n−1∑
j=0

e2πi j(u·ξ)


= 1̂Ω(ξ1, . . . , ξd)1̂[0,1](ξd+1)

1 − e2πin(u·ξ)

1 − e2πi(u·ξ) .(9)

(Since we care about zeros introduced beyond those of
1̂Ω×[0,1] we may assume that u · ξ < Z – see below.) De-
fine the subgroup of Rd+1

G =
{
ξ = (ξ1, ξ2, . . . , ξd+1) : u · ξ ∈ 1

n
Z

}
and its subgroup of index n

H = {ξ = (ξ1, ξ2, . . . , ξd+1) : u · ξ ∈ Z}.

From (9) it follows that the zeros of 1̂Ω′ are those due to
1̂Ω×[0,1] plus the union of cosets of H in G

D =
(
H +

u
n∥u∥2

)
∪

(
H +

2u
n∥u∥2

)
∪ . . . ∪

(
H +

(n − 1)u
n∥u∥2

)
.

If two distinct points of Rd+1 are in the same coset of H
then their difference is in H, so it is not in D.

Suppose Λ′ ⊆ Rd+1 is a spectrum of Ω′. Then, by Propo-
sition 1.1:

densΛ′ = |Ω′| = n|Ω| = n|Ω × [0, 1]|
(since for every 0 ≤ j < j′ ≤ n − 1, |(Ω × [0, 1] + ju) ∩ (Ω ×
[0, 1] + j′u)| = 0). We will now select elements of Λ′ of
density at least |Ω × [0, 1]| whose pairwise differences do
not intersect D. If we call Λ the set of those elements of
Λ′ that we kept, it follows that the pairwise differences of
Λ all fall in

{
1̂Ω×[0,1] = 0

}
.

To select the points ofΛ′, we want we look at every coset
λ + G, λ ∈ Λ′. For each λ0 ∈ Λ′, at least a fraction 1/n of
the points in Λ′ ∩ λ0 + G are on one of the cosets
(10) λ0 +H + jũ, j = 0, 1, . . . , n − 1
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of H, where
ũ =

u
n∥u∥2 .

We keep precisely those points ofΛ′ on λ0+G, i.e., those on
the most populated (highest density) of the n cosets (10).
It follows that for any two points we kept their difference
is either not in G (hence also not in D ⊆ G) or, if their
difference is in G, then it is in H, hence again not in D.

Thus, we conclude that if Λ′ is a spectrum for Ω′ then
we have that E(Λ) is orthogonal in L2(Ω×[0, 1]). Moreover,
by the construction of Λ its lower density is bounded from
below by

1
n

densΛ′ = |Ω × [0, 1]|.

By Proposition 1.1, we then have that Ω × [0, 1] is spec-
tral. Thus, from [GL16, Theorem 1.1] it follows that Ω is
spectral. □

Using Theorem 4.1, we can finally prove Theorem 1.5:

Proof of Theorem 1.5. Let d ≥ 3. By [KM2], we can choose
a finite disjoint union of unit cubesΩ ⊂ Rd which tiles the
space by translations and is not spectral.

Our goal is to construct higher dimensional bridges be-
tween the connected components of Ω while preserving
its tiling and spectral properties.

We denote by C1, . . . ,Cm ⊂ Ω , m > 1, the connected
components of Ω, and let C̃ j be the set of the centers of
the cubes that C j consists of. We may assume, without
the loss of generality, that

min
1≤i< j≤m

min{∥ci − c j∥ : ci ∈ C̃i, c j ∈ C̃ j} =

min{∥c1 − c2∥ : c1 ∈ C̃1, c2 ∈ C̃2}.

Let

D(C1,C2) B min{∥c1 − c2∥ : c1 ∈ C̃1, c2 ∈ C̃2} = ∥b − a∥

where a ∈ C̃1, b ∈ C̃2 are centers of unit cubes in C1, C2 of
minimal distance.

Let n =
⌈
D(C1,C2)

⌉
be the natural number closest (from

above) to ∥b − a∥, so that

(11) |C j ∩ (C j + v)| > 0, j = 1, . . . ,m
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where v = (b−a)
n ∈ Rd. Consider the stacking Ω1 of Ω:

(12) Ω1 := (Ω × [0, 1]) ⊕
{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}

where u = (v, 1) ∈ Rd+1. This is a disjoint sum because of
the 1 in the last coordinate of u, up to measure zero. In
other words, for every 0 ≤ j < j′ ≤

⌊
n
2

⌋
|(Ω × [0, 1] + ju) ∩ (Ω × [0, 1] + j′u)| = 0.

By Theorem 3.1 we know thatΩ1 tilesRd+1 sinceΩ tilesRd

and from Theorem 4.1 we also have thatΩ1 is not spectral
since Ω is not spectral. We denote

C1
j = (C j × [0, 1]) ⊕

{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}
, j = 1, . . . ,m.

Then, by (11), for each j = 1, . . . ,m, the set C1
j is a con-

nected finite union of unit cubes with centers

C̃1
j :=

(
C̃ j ×

{1
2

})
⊕

{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}
.

Let

D(C1
1,C

1
2) B min

{∥∥∥c1
1 − c1

2

∥∥∥ : c1
1 ∈ C̃1

1, c
1
2 ∈ C̃1

2

}
and n1 B

⌈
D(C1

1,C
1
2)

⌉
. Observe that, as

(
a,

1
2

)
+

⌊n
2

⌋
u ∈ C1

1,
(
b,

1
2

)
∈ C1

2,

and

n − 1 < ∥a − b∥ = DC1,C2 ≤ n
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we have:

D(C1
1,C

1
2) ≤

∥∥∥∥∥(a, 12)
+

⌊n
2

⌋
u −

(
b,

1
2

)∥∥∥∥∥
=

∥∥∥∥∥∥
(
(a − b) +

⌊n
2

⌋ (b − a)
n
,
⌊n

2

⌋)∥∥∥∥∥∥
=

1
2


∥∥∥∥(n+1

n (a − b),n − 1
)∥∥∥∥ n is odd

∥(a − b,n)∥ n is even

=
1
2


√(

n+1
n ∥a − b∥

)2
+ (n − 1)2 n is odd√

∥a − b∥2 + n2 n is even

≤ 1
2


√

2
(

n+1
n ∥a − b∥

)2
n is odd√

2n2 n is even

=
1√
2

{n+1
n D(C1,C2) n is odd

n n is even .(13)

a b∥b− a∥

c

∼ ∥b−a∥√
2

Figure 5. Shortening the distance between
two connected components. The slope of the
line from a to c is approximately 1 when n is
large. The blue set is Ω × [0, 1] ⊆ Rd ×R.

We have the following possible cases:

Case 1: If D(C1,C2) < 2, then n ≤ 2 and we have that C1
1∪C1

2 is
connected. Indeed, clearly D(C1,C2) > 1 as otherwise
C1 ∩ C2 is non-empty but this contradicts the as-
sumption that C1,C2 are different connected com-
ponents; therefore, we must have n = 2, u = ( b−a

2 , 1)
and the cube in C1

1 that is centered at ( a+b
2 ,

3
2 ) inter-

sects also the side of the cube centered at (b, 1
2 ) in

C1
2. Thus, Ω1 has at most m − 1 connected compo-

nents. (See Figure 6.)
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a b

Figure 6. This is Case 1, with D(C1,C2) < 2.

Case 2: If D(C1,C2) ≥ 2, then, by (13):

(14) D(C1
1,C

1
2) <

4

3
√

2
D(C1,C2) < 0.94281 ·D(C1,C2).

Indeed, if D(C1,C2) = n = 2, then (13) gives

D(C1
1,C

1
2) ≤

D(C1,C2)√
2

which implies (14). If 3 ≤ n is odd, then (13) im-
plies (14), since

(n + 1)
n

≤ 4
3

in this case. Otherwise, 4 ≤ n is even, and then by
(13) we have

D(C1
1,C

1
2) ≤

n√
2
≤

D(C1,C2) + 1
√

2
,

which implies (14) since

D(C1,C2) + 1 <
4
3

D(C1,C2)

in this case.
Unless Case 1 applies, we repeat the process above. In

the k-th iteration (k ≥ 2), the distance between the compo-
nents Ck−1

1 and Ck−1
2 of Ωk−1 ⊂ Rd+k−1 shrinks at a uniform

rate in Ck
1,C

k
2 ⊂ Ωk ⊂ Rd+k. (See Figure 5.) Hence, after

l < ∞ iterations, we obtain a set Ωl in Rd+l which is a tile
and is not spectral and such that D(Cl−1

1 ,C
l−1
2 ) < 2. There-

fore, as in Case 1 above, the set Cl
1 ∪ Cl

2 in Ωl ⊂ Rd+l is
connected. We constructed a “spiral bridge” in Ωl ⊂ Rd+l
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between the original components C1 and C2 of Ω, thus Ωl
has at most m − 1 connected components.

Figure 7. Two steps of the stacking proce-
dure. The blue set isΩ×[0, 1]2 ⊆ Rd×R2. The
distance between the two connected compo-
nents is being reduced exponentially. The
bottom layer of the cubes is the same as that
in Fig. 5, where they are shown in dimen-
sion d+ 1 (after just one step of the stacking
procedure.

We iterate this process, constructing m−1 spiral bridges
between all the components of the original set Ω while
preserving its tiling and non-spectrality properties, to
eventually obtain a connected set Ω̃ ⊂ Rd̃ which tiles the
space by translations and is not spectral. Finally, observe
that by construction, Ω̃ is a finite union of closed unit
cubes, hence Ω̃ is the closure of its interior. This com-
pleted the proof of Theorem 1.5. □

5. Discussion and open problems

5.1. Repairing the periodic tiling conjecture. De-
spite the fact that several positive results towards Con-
jecture 1.1 have been obtained over the years (see [GT22,
Section 1] for a partial list), the conjecture was recently
proven to be false in high dimensions [GT22]. However,
the aperiodic translational tile constructed in [GT22] is
a very complicated disconnected set, and, on the other
hand, Conjecture 1.1 is known to hold for convex domains
in all dimensions [M80,V54] in a strong sense: every con-
vex translational tile is also a lattice tile. This naturally
motivates one to seek the weakest regularity assumption
on the structure of a set under which the periodic tiling
conjecture is true in all dimensions.
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In this paper we construct aperiodic translational tiles
which are connected, showing that a connectedness as-
sumption is not strong enough for the purpose of repair-
ing the periodic tiling conjecture. We therefore must
strengthen it, and look for a regularity assumption in
the spectrum between connectedness and convexity. This
gives rise to the following questions:
Question 1. Does Conjecture 1.1 hold for simply con-
nected sets in all dimensions?

We suspect that by adapting the method in this paper,
constructing folded bridges between the connected com-
ponents, one might prove a negative answer to Question
1. Upon a negative answer to Question 1, we can further
ask:
Question 2. Does Conjecture 1.1 hold for topological balls
in all dimensions?

Note that while Conjecture 1.1 is still open in the
plane5, it is known to be true for topological disks [BN91,
Ken92].

5.2. Repairing Fuglede’s conjecture. Conjecture 1.3
inspired extensive research concerning the connection be-
tween spectrality and tiling by translations. Over time, it
has became apparent that in many respects, spectral sets
“behave like" sets which can tile the space by translations.
However, after a few decades, counterexamples to both di-
rections of the conjecture were constructed in dimension
d ≥ 3 (see [KM10, Section 4] and the references therein).

Although the connection between the analytic notion of
spectrality and the geometric notion of tiling by transla-
tions has been intensively studied, the precise connection
is still a mystery.
Question 3. What is the precise connection between spec-
tral sets and translational tiles?

This suggests the problem of determining the exact con-
ditions under which Conjecture 1.3 holds. In this pa-
per, we solve the problem for connected sets, showing that
there are connected counterexamples to Fuglede’s conjec-
ture. On the other hand, Conjecture 1.3 was proven to
hold for convex domain in all dimensions [IKT03, GL17,
LM19]. This suggests the study of the following question:

5But is known to be true in Z2 [B20].
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Question 4. Are there any topological conditions on a set
that force either of the directions of the Conjecture 1.3 to
be true?

5.3. Connectedness in low dimensions. Our main re-
sults, Theorems 1.2, 1.4 and 1.5, demonstrate that the
higher the dimension is the weaker a connectedness as-
sumption becomes. In particular, we show that any aperi-
odic d-dimensional translational tile gives rise to a (d+2)-
dimensional aperiodic connected translational tile. One
can ask about the necessity of the two additional dimen-
sions, as follows:
Question 5. What is the minimal d such that there is a
d-dimensional connected aperiodic translational tile?

We can ask the corresponding questions in the context
of Conjecture 1.3:
Question 6. What is the minimal d ≤ 5 such that there is
a d-dimensional connected counterexample to the direction
“spectral⇒ tiles” of Conjecture 1.3?
Question 7. What is the minimal d such that there is a
d-dimensional connected counterexample to the direction
“tiles⇒ spectral” of Conjecture 1.3?

In particular, can the proof of Theorem 1.5 be amended
to give a connected, non-spectral tile in a known dimen-
sion, in the spirit of Theorem 1.4? Notice that the con-
struction in the proof of Theorem 1.5 of spiral bridges goes
up in dimension by a number that depends on the tile we
are starting from.

5.4. Aperiodicity and spectrality. In [F74] it was ob-
served that by the Poisson summation formula, for a
lattice Λ ⊂ Rd, a measurable set Ω ⊂ Rd tiles by trans-
lations along Λ if and only if the dual lattice Λ∗ is a spec-
trum for Ω. This might be regarded as the motivation for
Conjecture 1.3. Thus, the recent discovery of aperiodic
translational tiles [GT22] brings up the question about
possible connection between counterexamples to Conjec-
ture 1.1 and counterexamples to Conjecture 1.3:
Question 8. Is there any aperiodic translational tile Ω ⊂
Rd which is spectral?

Note that a negative answer to Question 8 would give
rise to a new class of counterexamples to Fuglede’s con-
jecture.
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5.5. Quantitative aperiodicity in dimension 1. It is
well known that if a finite F ⊆ Z tiles Z by translation
then the tiling is necessarily periodic [N77]. In other
words if F⊕A = Z then there is N > 0 such that A+N = A.
How large can or must this N be compared to a mea-
sure of size of F, let us say compared to the diameter D
of F? While it is known that N can be even exponentially
large in D [K03,S05,S09] , and must be at most polynomi-
ally large in D, when |F| is kept fixed [GT20], no example
of a tile F is known where the minimal possible such N
(over all possible tilings by F) is more than linearly large
in D. Such a tile F, all of whose tilings by translation
would have periods much larger than D, would be a one-
dimensional, quantitative analogue of aperiodicity.

Question 9. Does there exist a family of finite sets Fn ⊆ Z
with diameter

diam Fn →∞
which tile by translation and the minimal period Nn of the
tilings that Fn admits satisfies

Nn

diam Fn
→∞?
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