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Abstract. A set Ω ⊂ Rd is said to be spectral if the
space L2(Ω) admits an orthogonal basis of exponen-
tial functions. Fuglede (1974) conjectured that Ω is
spectral if and only if it can tile the space by transla-
tions. While this conjecture was disproved for gen-
eral sets, it was recently proved that the Fuglede
conjecture does hold for the class of convex bodies in
Rd. The proof was based on a new geometric neces-
sary condition for spectrality, called “weak tiling”. In
this paper we study further properties of the weak
tiling notion, and present applications to convex bod-
ies, non-convex polytopes, product domains and Can-
tor sets of positive measure.

1. Introduction

1.1. Spectral sets. Let Ω ⊂ Rd be a bounded, measur-
able set of positive measure. We say that Ω is spectral if
there exists a countable set Λ ⊂ Rd such that the system
of exponential functions {exp 2πi⟨λ, x⟩}, λ ∈ Λ, forms an
orthogonal basis in L2(Ω), that is, the system is orthogo-
nal and complete in the space. In this case the set Λ is
called a spectrum for Ω.

The study of spectral sets has a long history, which goes
back to Fuglede [Fug74] who conjectured that the spec-
tral sets could be characterized geometrically as the sets
which can tile the space by translations. We say that the
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setΩ tiles the space by translations if there exists a count-
able set Λ ⊂ Rd such that the translated copies {Ω + λ},
λ ∈ Λ, constitute a partition of Rd up to measure zero.

Fuglede’s conjecture inspired extensive research over
the years, and a number of interesting results establish-
ing connections between spectrality and tiling had since
been obtained. On the other hand, also counterexamples
were found to both directions of the conjecture in dimen-
sions d ⩾ 3, see [Tao04], [KM10, Section 4].

It was recently proved in [LM22] that the Fuglede con-
jecture holds for the class of convex bodies inRd (compact,
convex sets with nonempty interior). That is, a convex
body Ω ⊂ Rd is spectral if and only if Ω can tile the space
by translations.

1.2. Weak tiling. To prove the Fuglede conjecture for
convex domains, the authors in [LM22] established a link
between the analytic notion of spectrality and a geomet-
ric notion which was termed “weak tiling”. It is defined
as follows:
Definition 1.1. We say that the set Ω can weakly tile
another measurable (possibly unbounded) set Σ ⊂ Rd by
translations, if there exists a positive, locally finite Borel
measure ν on Rd such that 1Ω ∗ ν = 1Σ a.e.

Note that in the special case where the measure ν is the
sum of (finitely or countably many) unit masses, the weak
tiling becomes a proper tiling of Σ by translates of Ω.

The following result was proved in [LM22].
Theorem 1.2 (see [LM22, Theorem 1.5]). Let Ω be a
bounded, measurable set in Rd. If Ω is spectral, then it
can weakly tile its complement Ω∁ = Rd

\ Ω by transla-
tions.

This result thus gives a geometric condition necessary
for spectrality. It establishes a weak form of the “spec-
tral implies tiling” part of Fuglede’s conjecture. We ob-
serve that the weak tiling conclusion cannot in general
be strengthened to proper tiling since there exist exam-
ples of spectral sets which cannot tile by translations.

Several applications of Theorem 1.2 were given in
[LM22]. The main one is the proof that the Fuglede con-
jecture holds for convex bodies in Rd. As another appli-
cation, it was proved in [LM22, Theorem 3.6] that if a
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bounded, open set Ω ⊂ Rd is spectral then its boundary
∂Ω must be a set of Lebesgue measure zero.

In the present paper we study further properties and
applications of weak tiling.

1.3. Equidecomposability. Let A,B be two (not neces-
sarily convex) polytopes in Rd. We say that A and B are
equidecomposable if A can be partitioned, up to measure
zero, into a finite number of smaller polytopes which can
be rearranged using rigid motions to form, again up to
measure zero, a partition of B. If the pieces of the par-
tition can be rearranged using translations only, then A
and B are said to be equidecomposable by translations.

It has long been known that if a polytope A ⊂ Rd can
(properly) tile the space by translations, then A must be
equidecomposable by translations to a cube of the same
volume. This result was first established by Mürner in
[Mür75], and was later rediscovered in [LM95a]. Re-
cently, it was proved in [LL21] that the same conclusion
holds also for the class of spectral polytopes, that is, any
spectral polytope A ⊂ Rd must be equidecomposable by
translations to a cube of the same volume.

We will prove the following simultaneous strengthen-
ing of the latter two results:

Theorem 1.3. Let A be a (not necessarily convex) polytope
in Rd. Assume that A can weakly tile its complement by
translations. Then A is equidecomposable by translations
to a cube of the same volume.

1.4. Convex domains. It is a classical result due to
Mürner, see [Mür77, Section 3.3], that a convex polytope
A ⊂ Rd is equidecomposable by translations to a cube if
and only if A is centrally symmetric and all the facets of
A (that is, the (d− 1)-dimensional faces of A) are also cen-
trally symmetric. Together with Theorem 1.3 this implies
that a convex polytope which can weakly tile its comple-
ment by translations must be centrally symmetric and
have centrally symmetric facets.

Actually, this conclusion can be significantly strength-
ened as follows. It was proved in [LM22, Theorem 4.1]
that if A is a general convex body inRd and if A can weakly
tile its complement by translations, then A must in fact
be a convex polytope. It was also proved [LM22, Theo-
rem 6.1] that if, in addition, A is centrally symmetric and
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has centrally symmetric facets, then each belt of A must
have either 4 or 6 facets. So in the latter case, it follows
by the Venkov-McMullen theorem [Ven54], [McM80] (see
also [Gru07, Section 32.2]) that A can tile its complement
not only weakly, but even properly, by translations. We
thus arrive at the following result:
Theorem 1.4. Let A be a convex body in Rd, and assume
that A can weakly tile its complement by translations.
Then A must be a convex polytope which can also tile the
space properly by translations.

We observe that for general sets (i.e. not assumed to be
convex) the result does not hold, since there exist exam-
ples of spectral sets which cannot tile by translations.

1.5. Product domains. Let A ⊂ Rn and B ⊂ Rm be two
bounded, measurable sets. It is known that if A and B are
both spectral sets in Rn and Rm respectively, then their
cartesian productΩ = A×B is spectral inRn

×Rm. Indeed,
if U ⊂ Rn is a spectrum for A, and V ⊂ Rm is a spectrum
for B, then the product setΛ = U×V serves as a spectrum
for Ω (see e.g. [JP99, Theorem 3]).

In [Kol16] the question was posed as to whether the
converse statement is also true.
Conjecture 1.5. Let A ⊂ Rn and B ⊂ Rm be two bounded,
measurable sets. Then their product Ω = A× B is spectral
if and only if A and B are both spectral sets.

The “only if” part of this conjecture is the non-trivial
one. The difficulty lies in that we assume the product set
Ω to be spectral, but we do not make any a priori assump-
tion that the spectrum Λ also has a product structure, so
it is not obvious which sets U and V may serve as spec-
tra for the factors A and B, respectively. (One can show,
see [JP99, Lemma 2], that if Ω happens to admit a spec-
trum Λ with a product structure, Λ = U × V, then U is a
spectrum for A and V is a spectrum for B.)

It was proved in [GL16] that Conjecture 1.5 holds in the
case where one of the factors, say A, is an interval in R.
In [Kol16] it was established, using a different approach,
that the conjecture is true also if the set A is the union of
two intervals in R. In [GL20] the conjecture was proved
in the case where the factor A is a convex polygon in R2.

As an application of the weak tiling method, we will
prove the following result:
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Theorem 1.6. Let Ω = A × B where A is a convex body in
Rn, while B is any bounded, measurable set in Rm. If Ω
is a spectral set then A must be spectral, or equivalently,
A must be a convex polytope which can (properly) tile the
space by translations.

This significantly strengthens [GL20, Theorems 2.1
and 2.2] where it was proved that A cannot have a smooth
boundary, and that if A is assumed a priori to be a convex
polytope, then A must be centrally symmetric and have
centrally symmetric facets.

It is known, see [Kol16, Section 1.2], that the product
set Ω = A × B can tile the space Rn

× Rm by translations
if and only if both A tiles Rn and B tiles Rm. In order to
prove Theorem 1.6 we shall use an analogous result for
weak tiling:

Theorem 1.7. Let A ⊂ Rn and B ⊂ Rm be two bounded,
measurable sets. Then the product set Ω = A × B can
weakly tile its complement in Rn

× Rm by translations if
and only if both A and B weakly tile their complements in
Rn and Rm respectively.

Theorem 1.6 is thus obtained by a combination of The-
orems 1.2, 1.7 and 1.4.

Similarly, by a combination of Theorems 1.2, 1.7 and
1.3 we obtain that if A is a (not necessarily convex) poly-
tope inRn, and if B is any bounded, measurable set inRm,
then the spectrality of the product Ω = A×B implies that
A is equidecomposable by translations to a cube. Alterna-
tively, it is possible to obtain this result by a combination
of [GL20, Lemma 5.1] and [LL21, Theorem 7.1].

1.6. Nowhere dense sets. Assume now that Ω ⊂ Rd is
a bounded, nowhere dense set of positive measure. It is
not hard to show that such a set Ω cannot tile the space
by translations. To see this, suppose to the contrary that
Ω+Λ is a tiling, thenΛmust be a locally finite set. SinceΩ
is bounded, any ball can thus intersect only finitely many
translated copies Ω + λ, λ ∈ Λ. Since Ω is a nowhere
dense set, then also any finite union of translates ofΩ is a
nowhere dense set. Hence the union of all the translated
copies Ω+ λ intersecting a given ball is a nowhere dense
set, so this union does not cover a set of full measure in
the ball, a contradiction.
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In [Mat05], the following question was posed: can a
bounded, nowhere dense set be spectral? The answer is
expected to be negative, but so far this has been proved
only in dimension one. In fact, it was proved in [IK13,
Corollary 1.6] that if a bounded, measurable set Ω ⊂ R
is spectral, then it can multi-tile the real line by transla-
tions. This excludes the possibility that Ω is a nowhere
dense set, by the same argument as above.

In this paper we use the weak tiling method as a dif-
ferent approach to the spectrality problem for bounded,
nowhere dense sets. We will prove the following result:
Theorem 1.8. Let E ⊂ R be a symmetric Cantor set of pos-
itive measure. Then E cannot weakly tile its complement
by translations. As a consequence, E is not spectral.

The definition of a symmetric Cantor set will be given
in Section 5.

If we combine Theorem 1.8 with Theorem 1.7 then
we obtain the following conclusion for multi-dimensional
nowhere dense sets with a cartesian product structure:
Theorem 1.9. LetΩ = E×B be the product of a symmetric
Cantor set E ⊂ R of positive measure, and an arbitrary
bounded, measurable set B ⊂ Rm. ThenΩ is not a spectral
set in R ×Rm.

We give two proofs of Theorem 1.8. In Section 5 we
prove it by closely examining the essential difference set of
a symmetric Cantor set in R and proving that the Cantor
set admits a packing region which is strictly larger than
the set itself (see Section 4). In Section 6 we prove di-
rectly that the Cantor set cannot weakly tile its comple-
ment by translations, by establishing in a quantitative
way the same property for the n-th generation set that
approximates the Cantor set.

2. Weak tiling and equidecomposability

In this section we prove Theorem 1.3, that is, we show
that if a (not necessarily convex) polytope A ⊂ Rd can
weakly tile its complement by translations, then A is
equidecomposable by translations to a cube. As a con-
sequence, any convex polytope that can weakly tile its
complement by translations must be centrally symmetric
and have centrally symmetric facets. In turn, this implies
Theorem 1.4 (see Section 1.4).
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2.1. The Fourier transform of a function f ∈ L1(Rd) is
defined by

f̂ (ξ) =
∫
Rd

f (x) e−2πi⟨ξ,x⟩dx, ξ ∈ Rd.

We will need a result from [LL21] concerning the zeros of
the Fourier transform 1̂A of the indicator function 1A of a
(not necessarily convex) polytope A ⊂ Rd.

Given δ > 0 and real numbers τ1, . . . , τk we consider the
set

T = T(δ; τ1, . . . , τk) = {n ∈ Z : |e2πinτ j − 1| < δ, 1 ⩽ j ⩽ k}.
(2.1)

If we are also given R > 0 then we let

J = J(R) = {n ∈ Z : 0 < |n| < R}. (2.2)

Finally, given also ε > 0 and a vector v ∈ Rd we define

S = S(T, J, v, ε) = {nv + w : n ∈ T \ J, w ∈ Rd, |w| < ε}. (2.3)

The following result was proved in [LL21] although it
was not explicitly stated there in this form.

Theorem 2.1 ([LL21]). Let A be a polytope in Rd. If A is
not equidecomposable by translations to a cube, then there
exist δ > 0, real numbers τ1, . . . , τk, a nonzero vector v ∈ Rd,
ε > 0 and R > 0 such that the Fourier transform 1̂A has
no zeros in the set S, where T, J and S are the three sets
defined by (2.1), (2.2) and (2.3).

We briefly indicate how this can be inferred from
[LL21]. If A is not equidecomposable by translations to
any cube, then there exists a Hadwiger functional HΦ
such that HΦ(A) , 0. Let p(u) be the trigonometric poly-
nomial constructed in [LL21, Section 6.1], and expand it
in the form p(u) =

∑k
j=1 c je2πiuτ j. Let δ = δ(p, η) > 0 be small

enough such that |p(n) − p(0)| < η for every n in the set
(2.1). We then continue the proof as in [LL21, Section 6]
to conclude that there exist a nonzero vector v ∈ Rd, ε > 0
and R > 0 such that 1̂A has no zeros in the set (2.3).

The results in [LL21] are based on an intricate analy-
sis of the asymptotic behavior of the Fourier transform 1̂A,
see [LL21, Theorem 4.1]. The analysis becomes consider-
ably simpler if the polytope A is assumed to be convex, see
[GL17, Sections 3 and 4].
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2.2. A measure µ onRd is said to be translation-bounded
if for every (or equivalently, for some) open ball B we have

sup
x∈Rd

|µ|(B + x) < +∞.

If µ is a translation-bounded measure on Rd, then µ is a
tempered distribution.

If f is a function in L1(Rd) and µ is a translation-
bounded measure on Rd, then the convolution f ∗ µ is a
locally integrable function on Rd defined uniquely (up to
equality a.e.) by the condition that ( f ∗ µ) ∗ φ = f ∗ (µ ∗ φ)
for every continuous, compactly supported function φ on
Rd.

Theorem 2.2. Let f ∈ L1(Rd),
∫

f , 0, and let µ be a
translation-bounded measure on Rd. If we have f ∗ µ = 1

a.e., then µ̂ = (
∫

f )−1
· δ0 in the open set Z( f̂ )

∁
.

Here we let Z( f̂ ) := {ξ ∈ Rd : f̂ (ξ) = 0} denote the
(closed) set of zeros of f̂ .

Theorem 2.2 can be proved in a similar way to [KL16,
Theorem 4.1].

2.3. We now turn to the proof of the main result of this
section.

Proof of Theorem 1.3. Let A be a polytope in Rd, and as-
sume that A can tile its complement weakly by transla-
tions, that is, there exists a positive, locally finite mea-
sure ν on Rd such that 1A ∗ν = 1A∁ a.e. By [LM22, Lemma
2.4] the measure ν is not only locally finite, but in fact ν
must be translation-bounded. It follows that the measure
µ := δ0 + ν is translation-bounded and satisfies 1A ∗ µ = 1
a.e. In turn, Theorem 2.2 implies that µ̂ = m(A)−1

· δ0 in
the open set Z(̂1A)

∁.
We must prove that A is equidecomposable by trans-

lations to a cube of the same volume. Suppose to the
contrary that this is not the case. Then by Theorem 2.1
there exist δ > 0, real numbers τ1, . . . , τk, a nonzero vector
v ∈ Rd, ε > 0 and R > 0 such that 1̂A has no zeros in the
set S, where T, J and S are the three sets defined by (2.1),
(2.2) and (2.3). It follows that we have µ̂ = m(A)−1

· δ0 in
the open set S.
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Now suppose that we are given a real-valued Schwartz
function g on Rd satisfying

supp(g) ⊂ S, ĝ ⩾ 0. (2.4)
Then we have∫

Rd
g(x)dx = ĝ(0) ⩽ ĝ(0) +

∫
ĝ(ξ)dν(ξ) =

∫
ĝ(ξ)dµ(ξ),

(2.5)
where the inequality in (2.5) is due to ĝ being a nonnega-
tive function and ν being a positive measure. On the other
hand, we have∫

ĝ(ξ)dµ(ξ) = µ(ĝ) = µ̂(g) = m(A)−1g(0), (2.6)

where the last equality holds since we have supp(g) ⊂ S
and µ̂ = m(A)−1

· δ0 in the open set S. We conclude that∫
Rd

g(x)dx ⩽ m(A)−1g(0) (2.7)

for every real-valued Schwartz function g satisfying (2.4).
We will show that this leads to a contradiction, by con-
structing an example of a real-valued Schwartz function
g satisfying (2.4), but such that (2.7) does not hold.

We choose a nonnegative Schwartz function φ such
that

∫
φ = 1, φ is supported in the open ball of radius

ε centered at the origin, and φ̂ ⩾ 0. Next, let ψ be a
nonnegative, smooth function on the k-dimensional torus
Tk = (R/Z)k, such that

∫
ψ = 1, ψ is supported in the set

{(t1, . . . , tk) : |e2πit j − 1| < δ, 1 ⩽ j ⩽ k}, (2.8)
and the Fourier coefficients ψ̂(m), m ∈ Zk, are nonnega-
tive. We may assume that R is an integer (by enlarging it
if necessary) and define also the trigonometric polynomial
pN(t) := KN(R t), where KN is the classical Fejér kernel,

KN(t) =
∑
|n|<N

(
1 −
|n|
N

)
e2πint, t ∈ T = R/Z. (2.9)

Then pN is nonnegative, pN(0) = N, the Fourier coefficients
p̂N(n), n ∈ Z, are also nonnegative, p̂N(0) = 1, and we have
p̂N(n) = 0 for every n ∈ J.

Finally, we define the function
gN(x) :=

∑
n∈Z

ψ(nτ) p̂N(n)φ(x − nv), x ∈ Rd, (2.10)

where we denote τ = (τ1, . . . , τk). Notice that there are only
finitely many nonzero terms in the sum (2.10), and that
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the nonzero terms correspond to integers n belonging to
the set T \ J. Hence gN is a real-valued (in fact, nonneg-
ative) Schwartz function such that supp(gN) is contained
in the set S. The Fourier transform of g is given by

ĝN(ξ) = φ̂(ξ)
∑
n∈Z

ψ(nτ) p̂N(n) e−2πin⟨v,ξ⟩. (2.11)

Using the (absolutely convergent) Fourier expansion of
the function ψ, we obtain

ψ(nτ) =
∑
m∈Zk

ψ̂(m)e2πin⟨m,τ⟩. (2.12)

If we plug (2.12) into (2.11) and exchange the order of
summation (which is justified as n goes through a finite
set of values) we obtain

ĝN(ξ) = φ̂(ξ)
∑
m∈Zk

ψ̂(m) pN(⟨m, τ⟩ − ⟨v, ξ⟩). (2.13)

Since all the terms on the right hand side of (2.13) are
nonnegative, we obtain that ĝN is a nonnegative function.
We conclude that gN satisfies the conditions (2.4).

To complete the proof we will show that if N is suffi-
ciently large, then gN does not satisfy (2.7). Indeed, we
may assume that ε < 1

2 |v| which ensures that the terms
in the sum (2.10) have pairwise disjoint supports. This
implies that

gN(0) = φ(0)ψ(0), (2.14)
so that the value gN(0) does not depend on N. On the other
hand, using (2.13) we have∫

Rd
gN(x)dx = ĝN(0) ⩾ φ̂(0)ψ̂(0)pN(0) = N, (2.15)

which can be arbitrarily large, contradicting (2.7). We
have thus arrived at the desired contradiction and so The-
orem 1.3 is proved. □

3. Weak tiling and product domains

In this section we prove Theorem 1.7. That is, we show
that if A ⊂ Rn and B ⊂ Rm are two bounded, measurable
sets, then the product set Ω = A × B weakly tiles its com-
plement in Rn

× Rm by translations if and only if both A
and B can weakly tile their complements in Rn and Rm

respectively.
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Proof of Theorem 1.7. Suppose first that both A and B
weakly tile their complements. Then there exist two pos-
itive, locally finite measures ν1 on Rn and ν2 on Rm, such
that

1A ∗ (δ0 + ν1) = 1 a.e. in Rn, 1B ∗ (δ0 + ν2) = 1 a.e. in Rm.
(3.1)

It follows that the (also locally finite) product measure

µ := (δ0 + ν1) × (δ0 + ν2) (3.2)

satisfies 1Ω ∗ µ = 1 a.e. in Rn
× Rm. Let ν be the positive

measure
ν := ν1 × δ0 + δ0 × ν2 + ν1 × ν2, (3.3)

and observe that we have µ = δ0 + ν. Hence 1Ω ∗ ν =
1Ω∁ a.e. and Ω weakly tiles its complement in Rn

×Rm by
translations.

Conversely, suppose that ν is a positive, locally finite
measure in Rn

×Rm satisfying

1Ω ∗ ν = 1Ω∁ a.e. (3.4)

For each y ∈ Rm we define a measure νy on Rn by the
condition∫

Rn
φ(u) dνy(u) =

"
Rn×Rm

φ(u)1B(y − v) dν(u, v) (3.5)

for any bounded, compactly supported Borel function φ
on Rn. It follows that

(1A ∗ νy)(x) =
∫
Rn
1A(x − u) dνy(u) (3.6)

=

"
Rn×Rm

1A(x − u)1B(y − v) dν(u, v) = (1Ω ∗ ν)(x, y).

(3.7)

We use this together with (3.4) to conclude by an applica-
tion of Fubini’s theorem that there is a set Y ⊂ Rm of full
measure, such that for any y ∈ Y we have

(1A ∗ νy)(x) = 1Ω∁(x, y), x ∈ X(y), (3.8)

where X(y) is a set of full measure inRn. In particular, for
y ∈ Y ∩ B this yields 1A ∗ νy = 1A∁ a.e. in Rn, which shows
that A weakly tiles its complement in Rn. In the same
way one can show that also B weakly tiles its complement
in Rm. □
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4. Packing regions

In this section we introduce the notion of a packing re-
gion, and use it to establish a geometric condition (dif-
ferent from the weak tiling condition) that is necessary
for the spectrality of a set A ⊂ Rd. To prove our result
(Theorem 4.3) it will not suffice though to invoke Theo-
rem 1.2, since the proof requires additional properties of
the weak tiling measure that are established in [LM22]
but not stated in Theorem 1.2.

4.1. In order to define the notion of a packing region, we
first need to introduce the following definition:

Definition 4.1. If A ⊂ Rd is a bounded, measurable set,
then the set

∆(A) := {t ∈ Rd : mes(A ∩ (A + t)) > 0} (4.1)

will be called the essential difference set of A.

The set ∆(A) is a bounded open set, symmetric with re-
spect to the origin.

The essential difference set ∆(A) can be viewed as the
measure-theoretic analog of the algebraic difference set
A−A. In particular, if A is an open set then ∆(A) = A−A.
In general we have ∆(A) ⊂ A − A, but this inclusion can
be strict.

Definition 4.2. We say that a bounded, measurable set
D ⊂ Rd is a packing region for A if we have ∆(D) ⊂ ∆(A).

Let us explain the reason for the name “packing re-
gion”. If Λ is a finite or countable set in Rd, then we say
that A + Λ is a packing if the translated copies {A + λ},
λ ∈ Λ, are disjoint up to measure zero. Then a bounded,
measurable set D is a packing region for A if and only if
whenever we have that A+Λ is a packing, then also D+Λ
is a packing.

4.2. The following theorem is the main result of this sec-
tion.

Theorem 4.3. Let A be a bounded, measurable set in
Rd. Suppose that A admits a packing region D such that
m(D) > m(A). Then A is neither spectral nor can it tile the
space by translations.
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Proof. We first show that A cannot tile by translations.
Indeed, if A + Λ is a tiling then D + Λ must be a packing,
and it follows e.g. from [GL20, Lemma 3.2] that m(D) ⩽
m(A). But we assumed that m(D) > m(A), so we arrive at
a contradiction.

Next we show that A can neither be spectral. Suppose
to the contrary that A is spectral, and let γ be the measure
given by [LM22, Theorem 3.1]. Define the function f :=
|̂1D|

2, then the Fourier transform of f is the function f̂ =
1D ∗ 1−D, that is, we have f̂ (x) = m(D ∩ (D + x)) for every
x ∈ Rd. In particular, f̂ (0) = m(D), and f̂ vanishes on the
set ∆(D)∁. On the other hand, we have γ̂ = m(A) δ0 in the
open set ∆(A), so due to the assumption that ∆(D) ⊂ ∆(A)
this implies that γ̂ · f̂ = m(A)m(D) δ0. The measure γ̂ · f̂
is the Fourier transform of the function γ ∗ f (see [KL21,
Section 2.3]), and it follows that γ ∗ f = m(A)m(D) a.e.

Recall now that γ is a positive measure, and that γ =
δ0 in some open ball centered at the origin. Since f is a
nonnegative function, this implies that

f = δ0 ∗ f ⩽ γ ∗ f = m(A)m(D) a.e.

But since f is a continuous function, it follows that the
inequality f (t) ⩽ m(A)m(D) must in fact hold for every t ∈
Rd. However f (0) = m(D)2, so this is possible only if m(D) ⩽
m(A). Since we assumed that m(D) > m(A), we arrive at a
contradiction. □

Remark 4.4. Let us comment that the proofs of Theo-
rems 1.3 and 4.3 share a common idea: in order to arrive
at a contradiction we construct a positive definite func-
tion with prescribed support, whose integral is “too large”
compared to its value at the origin.

Remark 4.5. We note that there is a notion of an orthog-
onal packing region, that was introduced in [LRW00] and
extended to general bounded, measurable sets in [GL20,
Section 3.6]. By definition, a bounded measurable set
D ⊂ Rd is an orthogonal packing region for A if we have
∆(D) ⊂ Z(̂1A)

∁. This notion was used in [LRW00, Lemma
2.3] and [Kol00b, Theorem 7] to establish a result analo-
gous to Theorem 4.3, namely, if A admits an orthogonal
packing region D such that m(D) > m(A)−1, then A is nei-
ther spectral nor can it tile by translations. Notice how-
ever that the notion of an orthogonal packing region is not
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purely geometric, as it involves the set Z(̂1A) of the zeros
of the Fourier transform 1̂A.

4.3. We give two examples demonstrating how to use
Theorem 4.3.
Example 4.6. Let A and D be the two planar domains
illustrated respectively on the left and right hand sides
of Figure 4.1. It is straightforward to verify that ∆(D) is
the open rectangle (−2, 2)× (−3, 3), and that ∆(A) contains
this rectangle. Hence D serves as a packing region for A.
But notice that m(A) = 5, m(D) = 6, so that m(D) > m(A).
It thus follows from Theorem 4.3 that A is not spectral.

Figure 4.1. The planar domain A shown on
the left is not spectral, since its has a pack-
ing region D (shown on the right) satisfying
m(D) > m(A).

Example 4.7. Let A be a convex body in Rd, and assume
that A is not centrally symmetric. Then the convex body
D = 1

2 (A − A) is a packing region for A, and we have
m(D) > m(A) by the Brunn-Minkowski inequality. Using
Theorem 4.3 this yields that a spectral convex body must
be centrally symmetric, a result first proved in [Kol00a]
based on the same consideration.
Remark 4.8. Due to [LM22] we know that a convex body
A ⊂ Rd is spectral if and only if it satisfies the follow-
ing four conditions: (i) A is a convex polytope; (ii) A is
centrally symmetric; (iii) all the facets of A are centrally
symmetric; and (iv) each belt of A has either 4 or 6 facets.
Example 4.7 shows that by an application of Theorem 4.3
one can prove the necessity of condition (ii) for the spec-
trality of A. We observe however that the same is not
true for the other three conditions (i), (iii) and (iv). In-
deed, let a convex body A ⊂ Rd be centrally symmetric,
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say, −A = A. Then ∆(A) = 2 int(A), where int(A) is the set
of interior points of A. If D is a packing region for A, then
∆(D) ⊂ ∆(A) and hence

m(∆(D)) ⩽ m(∆(A)) = 2dm(A). (4.2)
On the other hand, we can invoke a version of the
Brunn-Minkowski inequality for the essential difference
set ∆(D), see the inequality (2.6) in [BL76], which implies
that

m(∆(D)) ⩾ 2dm(D). (4.3)
It thus follows from (4.2) and (4.3) that m(D) ⩽ m(A),
whenever D is a packing region for A. Hence, assuming
that one of the conditions (i), (iii) or (iv) fails to hold does
not imply the existence of a packing region D such that
m(D) > m(A), and therefore one cannot establish the non-
spectrality of A by an application of Theorem 4.3.

4.4. The next result connects the notions of a packing
region and weak tiling.
Theorem 4.9. Let A be a bounded, measurable set in Rd.
Suppose that A admits a packing region D such that not
only m(D) > m(A), but moreover D ⊃ A. Then A cannot
weakly tile its complement by translations.

Proof. We use the same argument as in [LM22, Theorem
3.5]. Suppose to the contrary that 1A ∗ ν = 1A∁ a.e., where
ν is a positive, locally finite measure on Rd. Then

m(D ∩ A∁) =
∫

D
1A∁ dm =

∫
D

(1A ∗ ν) dm =
∫
φ dν, (4.4)

where φ(t) := m((A + t) ∩ D). The assumptions that D
is a packing region for A and D ⊃ A imply that φ must
vanish on the set ∆(A)∁. On the other hand, the measure
ν is supported on the set ∆(A)∁ due to [LM22, Corollary
2.6]. Hence the integral on the right hand side of (4.4)
vanishes. We conclude that m(D∩A∁) = 0, or equivalently,
m(D) = m(D∩A). But this contradicts our assumption that
m(D) > m(A). □

5. Cantor sets of positive measure: via the essential
difference set

In this section we prove Theorem 1.8, which asserts
that a symmetric Cantor set of positive measure inR can-
not weakly tile its complement by translations. The ap-
proach is based on the construction of a packing region D
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for the set E with m(D) > m(E) and moreover D ⊃ E. The
conclusion then follows from Theorem 4.9.

5.1. We start by recalling the definition of a symmetric
Cantor set in R. Let {ξk}, k = 1, 2, . . . , be a sequence of
real numbers such that 0 < ξk < 1

2 for all k. The sym-
metric Cantor set associated to the ratio sequence {ξk} is
the closed set E(ξ1, ξ2, . . . ) ⊂ R obtained from the interval
[0, 1] by a Cantor type construction, where at the k’th step
we remove from each one of the intervals of the previous
step a central open interval of relative length 1 − 2ξk, so
that at the k’th step we obtain 2k closed intervals of com-
mon length ξ1 · · · ξk.

The Lebesgue measure of the set E(ξ1, ξ2, . . . ) is

m(E(ξ1, ξ2, . . . )) = lim
k→∞

2kξ1 · · · ξk. (5.1)

We are interested in the case where E(ξ1, ξ2, . . . ) is a set
of positive measure.

5.2. Our proof of Theorem 1.8 is based on the following
lemma:

Lemma 5.1. Let E be a symmetric Cantor set of positive
measure in R. Then E admits a packing region D satisfy-
ing the two conditions D ⊃ E and m(D) > m(E).

Theorem 1.8 follows as an immediate consequence of
Theorem 4.9 and Lemma 5.1. So it remains to prove the
lemma.

We note that there exist results in the literature which
concern the set of differences E − E of a symmetric Can-
tor set E, see e.g. [FN23] and the references therein.
For example, it is well known that if E is the classical
ternary Cantor set (associated to the constant ratio se-
quence ξk =

1
3 ) then E − E = [−1, 1]. However, such results

do not suffice for our present purpose, as in order to prove
Lemma 5.1 we must establish that the essential difference
set ∆(E) (and not only E − E) is quite large.

We now turn to the proof of Lemma 5.1. This will be
done in several steps.

5.3. We will need the following proposition.
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Proposition 5.2. Let A be a bounded, measurable set in
Rd, and let B =

⋃n
j=1(A + t j) where t1, . . . , tn ∈ Rd. Then

∆(B) =
⋃

i, j

(∆(A) + ti − t j). (5.2)

The proof is straightforward and we omit the details.

5.4. Let E(ξ1, ξ2, . . . ) be the symmetric Cantor set associ-
ated to a given ratio sequence {ξk} (that is, a sequence of
real numbers such that 0 < ξk < 1

2 for all k). Then the set
E(ξ1, ξ2, . . . ) consists of all points x of the form

x =
∞∑

k=1

rkεk, (5.3)

where
rk := ξ1 · · · ξk−1(1 − ξk) (5.4)

and each εk is either 0 or 1. If we let Tk denote the finite
set of points x of the form

x =
k∑

j=1

r jε j (5.5)

where ε j = 0 or 1, then we have
E(ξ1, ξ2, . . . ) = Tk + ξ1 · · · ξkE(ξk+1, ξk+2, . . . ), (5.6)

so that E(ξ1, ξ2, . . . ) is the union of 2k disjoint homothetic
copies of E(ξk+1, ξk+2, . . . ).

It follows from Proposition 5.2 that
∆(E(ξ1, ξ2, . . . )) = Tk−Tk+ξ1 · · · ξk∆(E(ξk+1, ξk+2, . . . )). (5.7)

5.5. The following result establishes that Lemma 5.1
holds in the special case where the set E(ξ1, ξ2, . . . ) has
measure sufficiently close to 1.

Lemma 5.3. Suppose that E(ξ1, ξ2, . . . ) has measure at
least 4

5 . Then
∆(E(ξ1, ξ2, . . . )) = ∆(I), (5.8)

where I := [0, 1].

It follows from (5.8) that the set D := I serves as a pack-
ing region for E := E(ξ1, ξ2, . . . ), and we have D ⊃ E and
m(D) > m(E). We note that ∆(I) is simply the interval
(−1, 1).
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Proof of Lemma 5.3. Write m(E(ξ1, ξ2, . . . )) = 1 − ε. From
(5.1) it follows that

2ξ1 ⩾ 1 − ε, (5.9)

and
lim
n→∞

2nξk+1 · · · ξk+n ⩾ 1 − ε (5.10)

for every k. Note that 0 < ε ⩽ 1
5 by assumption.

The set ∆(E(ξ1, ξ2, . . . )) is symmetric with respect to the
origin and it is a subset of (−1, 1), so to establish (5.8) it
would be enough to show that ∆(E(ξ1, ξ2, . . . )) contains the
interval [0, 1). This will be done in two steps.

Step 1: We first show that ∆(E(ξ1, ξ2, . . . )) contains the
interval [0, 1 − ξ1).

Indeed, let t ∈ [0, 1−ξ1). For any two bounded, measur-
able sets E and F we have

m(E ∩ (E + t)) ⩾ m(F ∩ (F + t)) − 2m(E△F), (5.11)

where E△F is the symmetric difference of E and F. We
apply this estimate to the two sets E = E(ξ1, ξ2, . . . ) and
F = [0, 1]. On one hand, we have F∩ (F+ t) = [t, 1] and thus

m(F ∩ (F + t)) = 1 − t > ξ1 ⩾
1
2 −

1
2ε, (5.12)

where the last inequality follows from (5.9). On the other
hand, notice that

m(F△E) = 1 −m(E) = ε. (5.13)

So (5.11), (5.12) and (5.13) imply that

m(E ∩ (E + t)) > 1
2 −

5
2ε ⩾ 0, (5.14)

hence E ∩ (E + t) is a set of positive measure and t ∈ ∆(E).
Step 2: Next we show that ∆(E(ξ1, ξ2, . . . )) contains also

the interval [1 − ξ1, 1).
Let therefore t ∈ [1 − ξ1, 1), then we have r1 ⩽ t < 1.

Since
∑
∞

j=1 r j = 1, there is k such that

r1 + · · · + rk ⩽ t < r1 + · · · + rk + rk+1. (5.15)

Then we can write

t = r1 + · · · + rk + ξ1 · · · ξks, 0 ⩽ s < 1 − ξk+1. (5.16)

The set E(ξk+1, ξk+2, . . . ) also has measure at least 4
5 , due

to (5.10), so by what we have already shown in Step 1 we
have s ∈ ∆(E(ξk+1, ξk+2, . . . )). Moreover, the number r1 +
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· · · + rk belongs to the set Tk − Tk. Hence using (5.7) we
conclude that

t ∈ Tk − Tk + ξ1 · · · ξk∆(E(ξk+1, ξk+2, . . . )) = ∆(E(ξ1, ξ2, . . . )),
(5.17)

which completes the proof. □

5.6. Let Ek(ξ1, . . . , ξk) be the set consisting of the 2k dis-
joint closed intervals of common length ξ1 . . . ξk obtained
after the k’th step of the Cantor type construction. Then

Ek(ξ1, . . . , ξk) = Tk + ξ1 · · · ξkI (5.18)
where (as before) I = [0, 1], and we have

E(ξ1, ξ2, . . . ) =
∞⋂

k=1

Ek(ξ1, . . . , ξk). (5.19)

It follows from Proposition 5.2 that
∆(Ek(ξ1, . . . , ξk)) = Tk − Tk + ξ1 · · · ξk∆(I). (5.20)

The next result concludes the proof of Theorem 1.8 by
establishing that Lemma 5.1 holds in the general case.
Lemma 5.4. Let E(ξ1, ξ2, . . . ) have positive measure. Then
there is k such that

∆(E(ξ1, ξ2, . . . )) = ∆(Ek(ξ1, . . . , ξk)). (5.21)

It follows from (5.21) that the set D := Ek(ξ1, . . . , ξk)
serves as a packing region for E := E(ξ1, ξ2, . . . ). Moreover,
the two conditions D ⊃ E and m(D) > m(E) are satisfied,
so Lemma 5.1 is indeed established.

Proof of Lemma 5.4. We choose k sufficiently large such
that

lim
n→∞

2nξk+1ξk+2 · · · ξk+n ⩾
4
5 . (5.22)

Then by Lemma 5.3 we have
∆(E(ξk+1, ξk+2, . . . )) = ∆(I). (5.23)

Together with (5.7) and (5.20) this implies that
∆(E(ξ1, ξ2, . . . )) = Tk − Tk + ξ1 · · · ξk∆(I) = ∆(Ek(ξ1, . . . , ξk)),

(5.24)
and thus (5.21) is proved. □

Remark 5.5. It follows from (5.24) that if E(ξ1, ξ2, . . . )
has positive measure, then the essential difference set
∆(E(ξ1, ξ2, . . . )) is the union of finitely many open inter-
vals.
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6. Cantor sets of positive measure: via weak tiling

In this section we give another proof of Theorem 1.8,
which states that a symmetric Cantor set of positive
measure cannot weakly tile its complement by transla-
tions. In this proof the approach is direct and does not go
through the essential difference set.

6.1. Suppose that we have a Cantor set E ⊂ R which is
the intersection of the compact sets En, each of which is a
finite collection of closed intervals of length ℓn. The set En
is constructed from En−1 by throwing away an open middle
interval of length dn from each of the intervals of En−1. For
E to have positive measure it is necessary that dn/ℓn → 0.

The idea of this proof is to use the fact that the sets En
obviously cannot weakly tile their complement (the holes
are too small compared to the intervals making up En).
Making this observation quantitative is the key.

Suppose µ = δ0 + ν, with ν being a nonnegative Borel
measure and

1E ∗ µ = 1 on R so also 1E ∗ ν = 0 on E. (6.1)

Write An for the union of intervals (each of length dn) that
we threw away from the intervals of En−1 in order to obtain
the intervals of En (each of length ℓn).

Observe that
m(An) =

dn

2ℓn
m(En). (6.2)

Since En+1 ⊂ En we have by the monotone convergence
theorem that∫

En

1En ∗ ν→

∫
E
1E ∗ ν = 0, as n→∞. (6.3)

The last equality is due to (6.1).
We also have the crucial inequality (for all n for which

dn/ℓn < 1)
ℓn − dn

dn

∫
An

1En ∗ ν ⩽

∫
En

1En ∗ ν. (6.4)

To see this note that every time we “load” an interval of An
with a fractional copy (via the measure ν) of some interval
of En we also “load” one or both the intervals of En on each
side of An by at least a multiple (ℓn−dn)/dn of the load that
goes onto the An-interval.
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More formally, we first observe that for each interval J
of En−1 and for all t ∈ R we have

ℓn − dn

dn
m((En + t) ∩ An ∩ J) ⩽ m((En + t) ∩ En ∩ J). (6.5)

Summing over all intervals J comprising En−1 we obtain
ℓn − dn

dn
m((En + t) ∩ An) ⩽ m((En + t) ∩ En) (6.6)

or, equivalently,
ℓn − dn

dn

∫
An

1En(x − t) dx ⩽
∫

En

1En(x − t) dx, (6.7)

and integration dν(t) followed by Fubini’s theorem gives
(6.4).

We continue from (6.4) using (6.2):∫
En

1En ∗ ν ⩾
ℓn − dn

dn

∫
An

1En ∗ ν

⩾
ℓn − dn

dn

∫
An

1E ∗ ν (since E ⊂ En)

=
ℓn − dn

dn
m(An) (due to (6.1) since An ⊂ E∁)

=
ℓn − dn

dn

dn

2ℓn
m(En) (from (6.2))

=

(
1
2
−

dn

2ℓn

)
m(En)

→
1
2

m(E) as n→∞.

This positive lower bound contradicts the limit (6.3) and
finishes the proof.

6.2. It should be apparent that the proof above is quite
flexible and does not impose much rigidity on the Can-
tor sets of positive measure to which it applies. Instead
of trying to state the most general result possible let us
indicate this flexibility by giving an example in two di-
mensions, to which the method applies. This Cantor set
is not a cartesian product.

Define a Cantor set E ⊂ [0, 1]2 of positive measure as
follows (refer to Figure 6.1).

The set E will be the intersection of the decreasing se-
quence of compact sets En, with E0 = [0, 1]2. The n-th stage
set En will be a union of non-overlapping cubes of the same
side-length sn, all of them aligned at multiples of sn. To
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obtain the set En from En−1 we visit each of the cubes of
side-length sn−1 comprising En−1, we subdivide such a cube
Q into cubes of side-length sn = sn−1/Mn (here Mn > 0 is a
fast increasing integer sequence) and we throw away any
one of these cubes situated in the middle third of Q.

If the integer sequence Mn grows sufficiently fast then
the resulting Cantor set has positive measure. The proof
of the previous section then applies with no essential
changes.

sn−1

remove

sn

Figure 6.1. To go from En−1 to En we remove
one of the small cubes near the center of the
big cube.

6.3. Finally let us mention that there do exist spectral
unbounded nowhere dense sets of positive and finite mea-
sure. One way to obtain such a set is to construct a set
that tiles by Zd translates, and which therefore admits
Zd also as a spectrum. We describe the construction in
dimension one, but a similar idea works also in several
dimensions.

Assume first that we have
1[0,1](x) =

∑
n∈Z

1En(x) a.e.

where each En is a nowhere dense subset of [0, 1]. It fol-
lows then that the union

E =
⋃
n∈Z

(En + n)
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is a nowhere dense (unbounded) set in R which tiles by Z
translates, and is therefore spectral.

To construct this partition En we first pick a fat Cantor
set in [0, 1] (a Cantor set of positive measure – we can con-
struct such sets of arbitrarily large measure in any given
interval) as our first set. At any stage in the construc-
tion the complement of the (finitely many) closed sets we
have selected so far is an open subset of (0, 1), which is
therefore a disjoint countable union of intervals. In each
of these intervals we select another fat Cantor set, taking
care for the total measure of the complement to go to zero.
This process exhausts the measure and it is clear that the
resulting set coincides a.e. with a fundamental domain of
the lattice Z in R. In other words E +Z is a tiling.

7. Open problems

We conclude the paper by posing some open problems.

7.1. Let Ω ⊂ Rd be a bounded, nowhere dense set of pos-
itive measure. Can Ω be a spectral set? As we have men-
tioned in Section 1.6, the answer is known to be negative
in dimension one, but in dimensions two and higher the
problem is open.

7.2. Let Ω = A × B where A is a convex body in Rn, and
B is a bounded, measurable set in Rm. If Ω is a spectral
set, then A must be spectral according to Theorem 1.6. Is
it true that also B must be spectral?

At present this is proved only for dimensions n = 1 and
2 [GL16], [GL20].

7.3. Let K be a convex body in Rd, and assume that K
can weakly tile its complement by translations. Let W(K)
be the (nonempty, convex) set of all positive, locally finite
measures ν such that 1K ∗ ν = 1K∁ a.e. If we endow W(K)
with the topology of vague convergence, then W(K) is also
compact, so by the Krein-Milman theorem W(K) is the
closed convex hull of its extremal points. In particular,
W(K) has extremal points.

It is not difficult to verify that any proper tiling (that is,
any measure ν ∈ W(K) which is the sum of unit masses)
is an extremal point of W(K). Is the converse true?
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7.4. LetΩ be a bounded, measurable set inRd. Consider
the following properties:

(i) Ω can tile the space (properly) by translations;
(ii) Ω is spectral;

(iii) Ω can weakly tile its complement by translations.
It is obvious that (i) implies (iii), and by Theorem 1.2

we know that also (ii) implies (iii). On the other hand,
(iii) does not imply (i) (as an example, take a spectral set
that cannot tile), and also (iii) does not imply (ii) (take a
tile that is not spectral).

Does there exist a set Ω satisfying (iii), but such that
both (i) and (ii) do not hold?
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