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ABSTRACT

This paper presents an algorithm for the computation of siraight line projections
of an image by a Mesh Connected Computer. The algorithm is linear in the dimen-
sion of the image and has been extended to work on more general two-parameter fam-
ilies of curves. The same algorithm is used to compute the backprojections of the
image. Finally, some necessary conditions are given on the family of curves for the
execution of the algorithm to be linear and techniques for speeding up the algorithm
in some cases where it is slow, are described.

1. Introduction

The Mesh Connected Computer (MCC) model is defined as a parallel computer which consists of
N? processing elements (PE’s) arranged on the plane as in a NxN array, as shown in Figure 1. The
interconnection scheme is such that only local communication is allowed; global communication must
be implemented by a series of local data transfers,

The PE’s are identified with the set PIXELS := {0 - - - N-1}% we call PE(; ;, the processing
element which lies on the i-th row and the j-th column of the mesh. PE(; ;, has communication links
only w0 PE .y uy k[ =21, provided that they exist (a border PE has three or less links).

A PE is a central processing unit (CPU) equipped with a small number of registers. A PE can
change the contents of its own registers, read its own or its neighbours’ registers, and perform simple
arithmetic operations on the registers it can read. The number of regisiers a PE can contain is assumed
to be arbitrarily large but constant with &, and the same for all PE’s in the mesh. Global naming of the
registers in the MCC is adopted. That is, if a PE has a register named R then all PE's have a register

named R. Each register is big enough to hold an adress of a PE, that is each register is O( log N ) bits
long.

The MCC operates in SIMD (Single Instruction stream, Multiple Data stream) mode. This means
that it is controlled by another computer which regularly issues an instruction to be executed by all
PE's. The most general format of these instructions is assumed to be

if A then B ==C op D;

where A , B are registers in the PE and C , D are registers of the PE or its neighbours' or global data
specified by the supervisor computer, and the operator op is one of the usual arithmetic or bitwise
operators. When this instruction is transmitted to the PE's, then those PE's for which the register A is
different from 0 execute the assignment B := C op D while the others stay idle. This format allows
selection of the PE’s that will execute each instruction. It is also assumed that the supervisor computer
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sees each PE's memory (registers) as RAM (Random Access Memory), so that data can be loaded in
the MCC, processed, and read back 1o the host's memory.

For image processing applications, images are stored in the mesh in the nawral way, ie. the
(i,j)-th pixel of a N=N image is stored in register R of PE, i ,j» which is denoted by Ry; ;.

Because of the small depth of the mesh (only a constant number of registers in every PE, each
Of log N ) bits long) images are processed in the MCC in a fully distnbuted manner. The local
memory of any PE is O log N ) so that it cannot hold an entire row or column. It is also obvious that
any algorithm that requires data communication throughout the image takes at least O( ¥ ) time to run
on the MCC. This happens simply because it takes O( N ) ume to move some information from the
lower border of the mesh (line N-1) to the op border (line 0).

Linear time algorithms have been described so far for various such global problems. Thompson
and Kung [Thompson77] designed a linear time algorithm for sorting N* values stored in the natural
way in the MCC. This algorithm enables us to perform in linear time any permutation of the pixel
values of an image (or other data such as matrices). Van Scoy [VanScoy80] described a linear time
algorithm which can be used for computing in linear time closures of graphs stored as matrices, matrix
products, elc. Nassimi and Sahni [Nassimi80] described a linear time algorithm for labeling the con-
nected components of a binary image and Miller and Stout [Miller85] described linear time algorithms
for some geometric problems for binary images, such as the computation of diameters and internal
diameters of shapes (connected components) and algorithms for convexity problems.

In this work we consider the problem of computing the straight line projections of an image (i.e.
the sum of the image values along straight lines). This is a very common operation, especially in the
areas of medical imaging and feature extraction of images. The Hough transform [Duda72] for the
detection of straight lines and other curves can also be computed with our algorithm in linear time.
This is a good alternative to the methods presented in [Rosen88] which are based on rather different
principles. We discuss a linear time algorithm for the computation of projections for an image stored in
the MCC. The sequential time complexity for this problem is O( N* ), and thus the speedup is O( N? ),
which is obviously the best possible. This algorithm is also asymptotically optimal since the computa-
tion of the straight line projections is a global problem. The inversion of the projection operation
(backprojections) can also be computed in linear time by this algorithm.

We also extend our algorithm 0 run on more general families of curves, that is we extend it to
compute projections along curves other than straight lines, and we investigate and partially answer the
guestion, on which such families our algorithm is still linear.

2. The simplest form of the problem

In this section we present the problem of summing the values of an image in the MCC along a
curve. Suppose we have stored a NV digital image in the MCC, and the (i ,j }-th pixel is stored in
register IM; ;. (in register IM of PE; i

We define a digital curve ( or just a curve ) as an arbitrary ordered subset of PIXELS,

C:={a;.ay --- ,a). We call L the length of the curve C and we denote it by ICL We also
write C[{ ] for a;, We associate with each curve a number GAP(C) defined by

GAP(C) = tn}g:_-tbld{ Cli],Cli+1])

where d(x,y), for x,y in PIXELS is the [, distance between x and ¥, that is
di (x1.x7) , (n1.¥2) ) = =yl + leg=ysl. GAP(C) represents the biggest distance between two successive



Fig.1 A 4x4 MCC

| i

Y

_ ey e
- -
'F_"..‘- s T
~ e
= = =y 2
U
|+—£ =<7

L
l_j

Fig.2 A PE searching its neighbourhood of radius 4




pixels in C.

In what follows we shall only consider curves with IC1=0(N ) and GAP(C)=0(1). Our
algorithms work for any kind of curves, but time analysis results are described only for such curves.

Suppose now that we are given a curve C and we wish to compute the sum

SUM(C):= ¥ IM,
zinC
of the image values along the curve. The curve is labeled on the grid, in the sense that every PE has a
boolean register IN_CURVE which has the value true if and only if the PE is in C. Each PE has also a
register INDEX which equals the index of the PE in C (if IN_CURVE=true), i.e. INDEX ¢y = 1, for all i.

There are many ways to compute SUM(C), but we present one which is suitable for generaliza-
tion when the problem is to compute the SUM’s along many curves on the MCC,

An informal description of this algorithm is the following: we move a "box", which initially con-
tains the number 0, from the first PE in C to the last, passing the box from every PE in C to the next
PE in C, so that every PE increments the value in the box (when it reaches there) by its IM register.
When the box reaches PE¢( ¢ it will contain the required SUM( C ).

We shall need the following definition: a disk
D(x)={(yinPIXELS :d(x,y)<a)

is the set of all pixels whose distance from the center of the disk x is < a. Observe that there is a sim-
ple way to let each PE, in the MCC to see the contents of a register R of all PE’s in D( x ). We sim-
ply scroll some copies of the registers R round the PE's so that in O( a® ) time every PE has seen the
copies of all of its neighbours in the D, disk round it. This scrolling can be done for example as shown
in Figure 2.

A more detailed description of the algorithm for the summation is the following.

There is a register BOX and a boolean register HAVEBOX in every PE, and we make sure that, at
any moment, HAVEBOX, = true means that PE, "has the box" in its BOX register already incremented

by its IM register. Initially we set HAVEBOX = false for all PE’s except PE¢(, where we also set
BOX = IM. We now iterate the following step:

1:  Every processor which is in C (IN_CURVE = true) except the first one looks if its predecessor
along C (can be recognized by its INDEX register) "has the box" (has HAVEBOX = true) and if
yes it reads it from there in its BOX register. This operation takes O( GAP?( C ) ) time because
each PE has to search only in & Dg.p( ¢y disk around i, as described above.

2:  The processor which has just received the box sets BOX := BOX+/M, updating the box with its
contents, and also sets HAVEBOX := rrue. This costs O( 1) time.

3. Every processor except the last one searches again the Dgyp( ¢y disk around it to see if its succes-

sor has the box. If yes the PE sets HAVEBOX := false. This operation also costs O( GAP*( C ) )
time.

It is obvious that after IC! ilerations - which means O{ GAPY( C ) IC1) time - the box will be in
PE¢[i) and it can be read from there. Thus our algorithm works in O( N ) time if, ICl= O(N ) and
GAF(C)=0(1).

There are also other ways to compute SUM( C ). The easiest one seems to be the following:
scroll the image left and right O( N ) times in order to sum the curve values in each row separately,
and then propagate upwards these partial sums to be summed in the top row. Bul the algorithm that
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uses the box, is better because it can be easily generalized 10 sum over families of curves, and also
enables us w0 do other operations in addition to summation. In fact, using our algorithm we can
traverse a curve, regardless of what the operation is on the pixel values. For example, we can subtract
the value of each pixel from the value of its successor in the curve, or, to mention something more use-
ful, modify the pixel values according to what the box carries; this will be the case when the backpro-
jections of an image are 10 be computed.

Suppose now that we are given a family { C;)¥, of pairwise disjoint curves, that is
C; ™ C;j= (), whenever i #j ([] is the empty set). These curves are also labeled in the MCC, as
before, with an additional register CURVE which denotes the curve to which the PE belongs (if
IN_CURVE = true).

It ig straightforward how to extend the previous algorithm so as w compute the sums SUM( C; ),
i=1-:+M. Denote by G the maximum of GAP( C; ), for all i, and let now L be the maximum length
of the curves. Every processor now has to search in the D disk around it o find its predecessor along
the curve in which it belongs, if it belongs to any curve. The recognition of a PE's predecessor and
successor does not depend only on the INDEX register but also on the CURVE register. The only other

thing that has to be changed is the initial loading of the empty (containing 0) boxes which now has o
bcdﬂﬂﬁ fﬁraﬂFEc‘“],I'=l"'M.

The running time is O( G* L). Thus the running time is again O( N ) if GAP( C;)=0( 1), and
1C; I=0(N) uniformly for all i, that is, there exist two positive constants X, and K, such that
GAP(C;)=K,and IC; | =<K N, foralli=1--- M.

The extension of the algorithm from the one-curve case io the family-of-curves case was rather
trivial, because the processors which conmribute to the ransfer of boxes along a curve are only the pro-
cessors which belong to that curve. The sequential complexity for the family-of-curves problem is

M
O( 31 C;1). The complexity for the parallel algorithm we just described is O( _r:%ai | C; 1), which in
=l )
most practical cases, where the lengths of the curves in the family do not vary much, will be much fas-
ter. For example for a family of C\N curves which all have length C.N (C, , C; are constants) the
sequential algorithm takes O( N? ) time, while the parallel algorithm takes O( N ) time resulting in a
speedup of O( N ).

3. Computation of the projections along straight lines

In this section we shall give an extension of the previous algorithms for the computation of the
straight line projections of a digital image stored in the MCC in the natral way (one pixel per PE).
We have not given yet a definition of what a digital straight line is, but for any definition to be accept-
able, a NxN image must contain at least O( N* ) straight lines. This is because the straight lines of an
image are usually described with two parameters, which may be the slope and the distance from the ori-
gin or the two endpoints of the line, and we usually ask for O( N ) resolution in each of them,

So far, we have shown how o solve the problem for a set of straight lines (curves more gen-
erally} which do not intersect each other. The time required is linear in the maximum length of a curve
in the set (we always assume that GAP( C ) < k, for some constant k for all curves C in the set). But

the set of straight lines in an image contains many lines which intersect each other. Thus the previous
algorithm is not applicable in this case.



3.1. Definition of a digital straight line

Qur definition of a digital straight line is such that the straight lines of an image can naturally be
separated into subclasses of non-intersecting lines,

Definition. Let a and b, satifying 0 = b <N, and -=b < a <N — b, be two integers. We denote by
L, the straight line connecting the points (N = 1, b) and (0, a + b), which is drawn by Bresenham’s
algorithm [Bres65] starting from the first and ending at the second point.

MNote that we have restricted our definition only to lines which have their starting point in row
N -1 and their ending point in row 0. If we develop an O( N ) algorithm to compute the sums along
these lines only, the extension to a linear algorithm for the whole set of digital straight lines will be

almost immediate as long as we can partition the set to a (constant with N) number of subsets, in each
of which all the lines start from the same border and end at the same border,

Bresenham’s algorithm is a well known line drawing algorithm, with the following properties:
(B1} It uses only integer anthmetic.
(B2) Produces an 8-connected line.

(B3) If Bresenham's algorithm is used to draw a line connecting rows 0 and N — 1 of the mesh, the
resulting line has exacdy one pixel in each row,

(B4) The algorithm works incrementally. That is, it draws the points in the line one by one, and at
each stage of the computation the algorithm has to know only the endpoints of the line and the
point just drawn in order to find the next point (which will be in the row above).

(B5) Lines with the same a parameter have no points in common (a corresponds to the slope of a
straight line),

We chose Bresenham’s algorithm to define the straight lines, because of its incremental nature

(B4). This makes it easier for a PE in the MCC to find its predecessor or sucessor zlong a straight line,
knowing only its endpoints,

Integer arithmetic (B1) is also a desirable property of any line drawing or decision procedure for
the MCC because the PE’s are not usually equipped with a floating point unit, and because any proper-
ties of a line, drawn by an algorithm that uses floating point operations, are mare difficult to prove,
Indeed, to establish the connectedness of the resulting line, we would be forced to search for the least
number of bits needed to ensure connectedness and to prove that this number is below the O( log N )
bits available in each PE. All such questions and the resulting lack of elegance are now avoided.

3.2. Informal description of the algorithm

We now return to the problem of computing the number SUM{ C) for all C in the family
F = (Laglap, 0= b <N, —=b<a<N-b, which contains all digital straight lines whase first point
belongs to row N-1 and whose last point belongs o row 0.

We remind that we can solve the problem for families of curves which contain pairwise disjoint
curves. We can partition the family F into subclasses of non-intersecting straight lines. Each such sub-
class consists of all lines in F with the same a parameter. As we have already noted these lines have
no points in common (it is easy (o see that all these lines are the same set after a horizontal translation,
and so they cannot have common points, as each of them has only one point in each row), and we can
apply the algorithm of the previous section once for each subclass (we ignore at present the problem of
where 1o store the results; we only deal with the problem of traversing all lines in F). Unfortunately
this leads (o a quadratic time algorithm because there are O( N ) such subclasses (one for each allowed
value of parameter a), and we need O( N ) time w0 process each of them.
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We solve the problem by overlapping the processing of these subclasses so as to keep more PE's
busy at any moment. Specifically we select the subclass of lines with parameter a equal to ag, and
observe the algorithm of the previous section working on it. In Figure 3 we show some instances of the
computation by showing where the boxes are at each moment We can easily show that at each
moment all the boxes are in the same row (this simply happens because all lines with slope ap are equal
after a horizontal translation and so the boxes are moving in exactly the same way along them). Thus
we have a "wavefront of boxes” travelling upwards.

The key to the solution of our problem is that all PE's, which are left behind the wavefront, are
not doing anything useful, and we can let them execute the same procedure but for a subclass which
consists of lines with a different slope, say gy + 1. This will creats a second wavefront of boxes moving
upwards at the same speed with the first one (both wavefronts move upwards one row per iteration of
the algorithm, because all boxes continue to move and all lines have exactly one pixel in every row).

Continuing this way, we can let the PE’s under both wavefronts start executing the algorithm for
ap + 2, etc. We thus create a sequence of wavefronts which are moving upwards with the same speed.
The distance of such a wavefront from its next wave is constant with N (one or two rows depending on

the details of the implementation). Thus we conclude that all wavefronts will reach the top border in
O( N ) time and we have achieved the desired linearity.

3.3. The algorithm in detail

The minimum value of the a parameter is -N+1 (corresponding to the line from (0,0) to
(N-1,N-1)) and the maximum value is N-1 (line from (0, N-1) to (N-1,0)), thus we have
2N-1 different subclasses, as described above. Call these allowed values of a, a; through a,y., and the
corresponding subclasses of F,F;,i=1--- 2N-1,

We generate regularly new "box waves" at the lower border which travel upwards; the first box
wave will be sliding along lines in F;, the second along lines in F; and finally the last along lines in
Fin.;. The moving boxes carry information about the line they slide on (the a and & parameters).

Each PE which has finished working for slope a; starts working for slope a;, j>i, where j, is the
least index so that the PE belongs to some line in the subclass F;. Since the PE alone cannot compute
(at least in any obvious way) the value of j we let each PE that "has a box" to notify its succesor for its
existence. This can be done because the box carries information about the line, and the detection of the
succesor 15 a simple application of Bresenham's algorithm. For the notification, a flag in the PE is set
and if every PE examines its three lower 8-neighbours (its only possible predecessors) it can see the
flag and understand that there is a box waiting for it

Therefore in every iteration of the algorithm, each PE waits for an incoming box and when it gets
it, it updates its contents, and (if it does not belong to line 0} it notifies its successor along that straight
line for the presence of the box. Afier it is sure that the successor has taken the box it starts again look-
ing for another incoming box.

The algorithm consists of the following steps:

1: Set i=1,

2:  Load (in parallel) the boxes that will slide along the lines in F; in line N-1 of the MCC.
3:  Let all PE’s that have a box update it.

4:  Let them also find their successors for the line defined in the box they have.

5:

Notify the succesor (set a flag with the successors name).
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6:  Every PE checks if it has been notified by one of its three lower 8-neighbours; if yes, it reads the
new box from that neighbour.

7:  If i = 2N-1 then go to step 2 else go to step 3 unless the whole computation is over, that is { > T,
where T is the necessary number of iterations (3N would do).

3.4, Storing the results

So far we have said nothing about where we store the boxes that arrive at row 0 (call them ready
boxes). It is obvious that the total storage in line 0 is O(N logN) which is less than O(N*logh) which is
the total storage required. Thus we must distribute the results to be stored elsewhere in the mesh. This
is done as follows: for every column in the mesh we create a flow of ready boxes which "fall” from
row 0 to row N-1. Whenever a ready box reaches line 0 it falls downwards until it finds an already
stored box ( which fell before it ), and it stops there, That is each column works as a stack.

4. General two-parameter families

In this section we generalize the previous algorithm to two-parameter families of curves which
are not necessarily straight lines. Let {C;);;,i=1---N,j=1"--M; be a family of curves such that
curves with the same [ parameter are disjoint, and such that there is a way that any PE in the mesh can
{in constant time) decide if it belongs to any curve with first parameter equal to a given {, and if it
does, it can find its predecessor and its successor along that curve. This last requirement on the family
C;; can be relaxed depending on the case. For example in the case of straight lines, a PE could not
decide in constant time if it belonged to a curve in a cetrain subfamily, just given the parameter g, but
in the context of the computation this decision was possible. It is not required that the PE can also

compute the corresponding value of j and we shall see that the j index of a curve plays absolutely no
role.

We shall again load a box at the first PE of any C;; curve and let it slide along the curve until it
reaches the final PE in the curve. In the previous case of straight lines all boxes behaved the same
way; that is, we knew that all boxes of the same F; subfamily were at the same row at any moment.
This was due o the namre of the straight lines (and the parametrization) and we cannot expect it
hold in general. In general, the boxes will be sliding along different curves with different speeds and
there will be curves of various lengths. Thus, the algorithm must take this fact into account.

There is a register [ in every PE and all I's are inidally set equal to 1. The content of the [ regis-
ter of a PE is an integer from 1 to N and every PE helps the transfer of boxes along the curve with first
parameter equal to f that passes through it (if there is any such curve). A PE increments its [ register
by 1 whenever (i) it decides that it belongs to no J-curve (curve with first parameter 1), (i) if the suc-
cessor of it along its [-curve has taken the box, or (iii) if it has the box and it is the last PE in its [-
curve. Case (ii) is included in order to ensure that no PE will switch 1o another curve before its succes-
sor along the previous one takes the box, which would result in the loss of the old box.

The decription of the general algorithm follows. G denotes as before the maximum distance
between two successive pixels in all curves (in the case of straight lines G was 2},

1: Set I=1 in all PE’s.

2:  Let all PE’s decide if they belong to any I-curve, and their relative position there,
3:  Let all PE’s which do not belong to any f-curve switch to /41, i.e. let them execute [=/+1.
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4:  Let the others examine if their predecessor has the box and take it if they find it The D disk
about all PE’s has to be searched for the box to be taken.

5: Let the PE's whose successor has taken the [-box from them or which are the last in their J-
curves switch to f+1.

We repeat steps 2-5 until all boxes have reached the final PE’s in their curves. We may know in
advance the number of iterations needed if a time analysis has been performed in advance (as seen in
the next section for a rather big class of families) or we may let the PE’s decide that the computation is
over and inform the host, perhaps by setting a flag in PEgq,. This last choice would of course imply a
delay of O(N) time in the detectdon of the ermination.

If we want to store the resulting boxes (as in the previous paragraph) we must ask that all curves
in the family must end in some border, in order to apply the previous trick. The only difference from
the straight lines case is that now a curve may end in any of the four borders so we must create four
stacks for storing the boxes, one in each border.

5. Analysis of Time
Let {C;);;, =1..N, j=1..M; denote, as before, a family of curves, such that:
(i) Ciy\Ciy=(]) for all { and j=/" ( {} denotes the empty set ),
(ify the maximum gap G (as described in the previous section) for all curves is O(1),
(iii) IC;yl are O(N), or, equivalently, there is a constant C such that IC; ] < CN.
(iv) each PE can, given i, decide in constant time if it belongs to any curve in the subfamily {C; i

and if yes, it can identify, also in constant time, its relative position in that curve (successor and
predecessor if they exist).

Let Switch(iA), =1 - - - N, A in PIXELS, denote the time at which processor PE, "switches to i"
(sets its [ register equal to i). Also let Time(i,jk), denote the time at which the box which moves along
the curve C;; reaches processor ‘DEC.-,.{*]' According to the description of the algorithm, given in the
previous section, we have for the function Switch:

Switch(1,A)=0, for all A in PIXELS, (1)

Time(i jJ+111 if A=C,j[k] and k<IC;
Switch(i+1A) ={  Time(jJH1  if A=Cy,{ ICi/ ) @)
Switch(AW1  if A is not in any Cy; curve for all j

(where the delay of a single iteration of the algorithm is one time unit).

Equation (1) represents the fact that initially all processors work on their 1-curves (curves with
first parameter equal to 1, which pass through the processors). In equation (2) the last choice on the
right side, shows, that if A does not belong to any of the {C; Jj1j curves, then PE, can detect this fact in
one period and Switch to i+1. The second choice represents the fact that A is the last pixel in a C;;
curve so whenever it takes the box it can (after having updated it) Switch to i+1 without waiting for
anything else to happen. In contrast, the first choice shows that if A belongs to a C; ; curve, without
being its last pixel, then it has to wait for its successor along that curve 1o take the box, before being
allowed to Swiich 1o i+1.

For the function Time we have:



E

Time(ij,1) = Switch(i,C;;[11} + 1 for all ij (3)

and
Time(i jhe+1) = max{Time(i k), Switch{i,C; k1) + 1 for all i, j, k. {4)

Equation (3) says that for the first pixel in a curve, the box (for that curve) is created there as
soon as the corresponding processor starts working on that curve. Equation (4) says that for non-first
pixels C;j[k+1] in a curve, the box reaches them after they have Switched to C;; and after it has
reached their predecessors, C; {k].

The problem we shall now deal with is 1o find a (sufficiently big) class of families of curves with
properties (i) through (iv), for which the algorithm we have described runs in linear tme. To simplify
our work we shall only look for families of curves which satisfy the relation:

Time(i jK) < MHuk (5)
for some positive constants (L.e. independent of N) A and L.
Inequality (5} implies the linearity in & of the execution time of the algorithm because
Time(i jN) € AHUN for all i, § . (6)

Of course this assumption will narrow the class we are going to find. Inwitively, inequality (5)
says not only that the algorithm runs in linear time but also that the progress of the computation is
"smooth”, because Time(ijN)<h+HuV, Le. the results on the subfamiles (C;;); are produced in a
somehow prescribed rate (this may possibly be a desired property of the algorithm: one can think of

applications where processing of partial results by another machine takes place before the whole com-
putation finishes),

To determine such a class with families of curves that satisfy (5) we work with induction; the
requirements we will pose on the family so that we can inductively prove (5) will describe the class.

Proceeding in this fashion, we naturally find the following sufficient condition for (5) to hold:

Theorem: Let (C;;);; be a family of curves with propertes (1) through (iv). Let A in PIXELS be
any pixel and A=C,;[k]=C;7[K"], where i>{". If there is a positive constant A such that for all such A the
inequality:

K-k < A=) , ()

holds then the running time of the algorithm for the computation of the sums along the C;; curves is
linear, and family C satisfies (5) with some positive constants X and [

Proof: Set p=1, L= A + 2 and work with induction first on { and then on k using relations (1)-
{4) and (7).-

Every processor PE, of the grid, for any i, may or may not belong to some C;; curve, and when-
ever it belongs to such a curve it has an index in that curve k (ie. A=C; jlk]} which varies with i.
Condition (7) in the previous theorem guarantees that, whenever this index falls from one curve to the
next, this decrement is dominated by the difference of the i parameters of the corresponding curves.

With the examples that will be given in the next section it will become apparent why such a
thing should be expected. Noie that condition (7) is evidently not necessary for the algorithm to run in
linear time. This is shown by the following argument: If (Ci;)i; and (D;;);; , =1 --- E.jzl re N

2
are two arbitrary families of curves that satisfy (i) through (iv) and (7), and {E; Jjlij» i8 their concatena-

tion (the curves in C followed by those in D), then obviously our algorithm runs in linear time for the
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family E which of course is not guaranteed at all to possess property (7), since families C and D were
arhitrary.

Thus our algorithm runs fast not only for those cases predicted by the previous Theorem, but also
on families that are concatenations of a constant number of such families.

6. Examples and techniques

To illustrate the strong dependence of the performance of the general algorithm on the choice of
parametrization for the curves in the family, we consider the previous family of digital straight lines
(Lop)aps which start from the lower border and end in the upper border of the grid. Suppose that the
first parametcr a takes the values ag=ag+k, k=1--- O(N). We now reparametrize the families
Fy = {Lg p}s, with k even, starting from the top border and moving to the lower, as in Figure 4. It is
easy to see that if we apply our algorithm for this family of straight lines, the running time will be qua-
dratic in N, because the computation on family Fy,, starts only when the computation on family F; has
finished. This is because the first pixels of the curves in Fy,, are last pixels of the curves in F,. Note
that, indeed, this family of straight lines violates inequality (7). We can see it for a pixel in the top
border, which for i=1 has index k=N but for i=2 it has index k=1. Suppose now that for some reason
we insist that the scanning of the lines in F,, k even, must be from the top border to the lower border,
and for k odd, it must be from the lower border to the top border, as above. How shall we do it in
linear time? The answer is easy. Do it first for all F, k odd, and after you finish do it for all Fy, k

even. The time will of course be linear, This is one way to handle such bad cases. We will see some
more.

It is obvious that the algorithm can also be used for operations other than addition of the image
values along the curves, Since we have a way to scan with some boxes of information all the curves in
a family, we can do many more things, by changing the operation of updating the box in each PE or
even by letting the boxes alter the contents of the PE's they meet. This last observation can be used to
compute in linear time backprojections of images stored in the grid. To implement the backprojection
operation we must share the contents of the boxes along the lines they scan. So whenever a box
reaches a PE it increments some register with its contents. Note also that we are not essentialy res-
tricted by the algorithm as to how the boxes share their contents along the curve. For example, one

might want a box to leave at each PE a fraction of its contents, which could depend on the index of the
PE in the line.

In cases such as backprojection, where the boxes are not used to gather information, the require-
ment that the endpoints of the curves are on a border is not necessary, because we don’t need 1o store
the boxes. However, we must ask that the starting points of the curves are on some border, for the sim-
ple reason that we have to load the boxes at the starting PE's of the curves, and we have to do it fast.
Think of it as playing backwards in time the projection operation. The information carrying boxes are
moving up and enter their lines one afier the other.

Now we shall see another, not so artificial, example of a family of curves where the algorithm
does not run fast if applied directly, and we shall see how we can do it faster.

We are dealing with the family which is shown in Figure 5. It looks like some TT's one inside
the other which move (as their i parameter increases) all together o the right. Let us denote this family
by {T1;;};;. The curve II,; is a horizontal translation by one pixel to the right of curve I;; The

height of all TT's is not less than a fraction of N, say -J;i Suppose that we have parametrized these

curves in the clockwise way, and that the IT's move to the right one pizel at a time. What is the
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running time of our algorithm if applied to this family? For each i we draw a "surface” over the grid,
which represents the index of every pixel in the grid. This surface which moves to the right as i
increases, is shown for a fixed value of { in Figure 6.

In the same figure you can ses that the surface has some "discontinuity” along the IT's axis of
symmetry. This means that the indices on the right side of this axis are much higher than the indices
on the left side of the axis. "Much higher” here means that their difference is not bounded by a con-
stant independent of N. If we observe the right endpoint of the innermost I, we see that, when the IT's
mave one pixel to the right, it becomes starting point of the new innermost I1. So, for the innermost I1
of family {I1;;}; to be computed, the computation along the innermost IT of family {I1.;;]; must have
finished. Bu: the length of the innermost IT's is at least N and thus the running time will be quadratic
in this case. Indeed, the inequality (7) is violated here, along the axis of symmetry.

We shall give two distnct solutions to this problem. The first, and more general, is to observe
that we can break the IT's to straight line segments, as in Figure 7. If we can compute the sums along
these families, then we can easily combine these partial results to compute the sums along the IT's.
The only problem with the three new families is that their endpoints are not in boundaries. But we can

extend them to the boundary and simply order the new PE’s to let the boxes pass, without incrementing
them.

The second way to solve this problem is the most interesting, but perhaps less general than the
first one. It comes straight from the fact that inequality (7) only requires that the index decrements are
bounded and not necessarily the increments. So if we parametrize the I1's counterclockwise, we shall
have absolutely no problem. Now the discontinuity along the axis of symmetry stll exists but the high
indices are now on the left, and we can verify that (7) holds for this family, Whenever the indices
decrease in the gnd, the decrement is bounded by a constant with N, and the only unbounded changes

of indices are increments (along the axis of symmetry). This cbservation shows once more how impor-
tant the curve parametrization can be.

Note that if we moved the IT's along their discontinuity, i.e. upwards or downwards, the time
would be linear with either clockwise or counterclockwise parametrization. In this case both decre-
menis and increments of indices are bounded by a constant with N,

As a last example, let us see the case of computing the projection on a family of cocentric cycles
which are moving to the right, as in Figure 8 (a possible use of the sums on these curves might be the
search in an image of a bright point around which the brightness falls in a prescribed manner.)

This family does not satisfy the endpoints requirement, which we ask to be able to apply our par-
tial results storage trick, but as before we can decompose the problem to the computation of the sums
along the curves in Figure 9, where the extra straight line segments we have added are inactive, that is
the PE's that belong to those segments let the boxes pass without incrementing them. Observe that
each of the two new families essentialy behaves like the family of IT's before. So if we parametrize
the family which is concave downwards counterclockwise and the other family clockwise, and run our
algorithm on each of these, the time will be linear,

A final, rather trivial, note on the efficiency of the algorithm is that, in case we have to compute
the projections along the same curves for more than one image, we do it for all images together, for we

can do the communication operations required by the algorithm only once for all images (we move and
update n boxes at a time instead of one, where n is the number of images.)



Fig.5 The family moving to the right



Fig. 6 The index surface above the grid
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Fig.8 Cocentric circles moving to the right
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7. Conclusions

The algorithm presented is particularly suitable for MCC's who contain a very big number of
PE’s and it poses no serious requirements on the power of the individual PE’s or on their local storage,
since it works entirely with integers and uses a very small number of registers in every PE.

It is wmivial how to extend it to work for families in three or more parameters while keeping it
optimal and the techniques we have shown allow us to achieve the linearity in many cases.

Condition (7) in section § is powerful enough to help us show the linearity in cases when it is not
evident, like the case of the IT's in section 6.
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