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Abstract

We give several applications of the probabilistic method in harmonic analysis and addi-

tive number theory. We also give efficient constructions in place of previous probabilistic

(existential) proofs.

1.

Using the probabilistic method we prove that there exist integers py,...,pny > 0 for

which
N

min ij cos jz| = O(s/?),
j=1

as § — 0o, where s = Z;\le p;. This improves a result of Odlyzko who proved a similar

inequality with the right hand side replaced by O((slogs)'/?).

. Similarly we prove that there are frequencies \y < --- < Ay € {1,...,c¢N}, for ¢ = 2,

for which
N
min D cosjz| = O(N'/?)

j=1

and that this is impossible for smaller values of the positive constant c.

. The previous result is used to prove easily a theorem of Erdés and Turdn about the

density of finite integer sequences with the property that any two elements have a
different sum (B, sequences). We also generalize this to By, sequences (of which all
sums of 2h elements are distinct). Some dense finite and infinite B;[2] sequences (only

two pairs of elements are allowed to have the same sum) are also exhibited.

. We prove that for any sequence of integers n; < ... < ny there is a subsequence

Ty s -« 5 Ny, Such that

,
mianosnmjm >C-N,
xr
=1

vii



where C' > 0 is an absolute constant. Uchiyama had previously proved this with the
right hand side replaced by C - N/2. Furthermore, our proof is constructive. We give

a polynomial time algorithm for the selection of such a subsequence.

. A set F of positive integers is called a basis if every positive integer can be written in
at least one way as a sum of two elements of £. Using the probabilistic method, Erdés
has proved the existence of such a basis F for which every positive integer z can be
written as a sum of two elements of F, in at least ¢;logz and at most ¢y log z ways,
where ¢, ¢ > 0 are absolute constants. We give an algorithm for the construction of
such a basis which outputs the elements of F one by one, and which takes polynomial

time to decide whether a certain integer is in E or not.

. We employ the probabilistic method to improve on some recent results of Helm related
to a conjecture of Frdos and Turan on the density of additive bases of the integers.
We show that for a class of random sequences of positive integers A (which satisfy
|AN[1,z]] > C -/z), with probability 1, all integers in the interval [1, N] can be
written in at least ¢ylogz and at most ¢yloga ways as a difference of elements of
AnN[1, N?]. Furthermore, let my be a sequence of positive integers which satisfies the

growth condition
o0

Z log my, <
00
k=1 V Mk

We show that, for the same class of random sequences and again almost surely, there

is a subsequence B C A, |BN[1,z]| > C -/, such that, for k sufficiently large, each

my can be written in exactly one way as a difference of two elements of B.
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Notations

The letter C' will be used as an absolute constant. It need not represent the same constant
in all its occurences, even in the same formula.

a = O(b) is equivalent to |a| < C|b|, for some constant C.

a € bmeans a = 0(b). a> b means b < a.

a = o(b) means that a/b — 0 as a certain parameter, that will be implicit from the context,
tends to a limit.

|z] is the largest integer not larger than z and [z] is the smallest integer not smaller than
x.

¢~ is defined as min {0, z} (the negative part of ).

(The LP morms) || f[|, = (f|f|p)1/p for 1 < p < o0, and ||f]|,, = esssup|f|, where the
integration and the supremum are taken over the domain of definition of the function f,
which will be implicit.

If F is a subset of a measure space then |E| denotes its measure. If E is a finite set then
|E| denotes its cardinality.

We denote sequences of positive integers by capital letters and the individual elements of

the sequence by lower case indexed letters:
A=Hay,aq,...}

and we usually assume that @y < ag < ---. We also write
A(w)=1AN[1,a]

for the counting function of the sequence A.

The Fourier coeflicients are defined by
7 1 —ina
fy = 5= [ s@emda.

xiii



o~

In particular f(0) = 5= 2T f(x)dz. (f must be in L1[0,27].)

N denotes the set of natural numbers (positive integers), Z the integers, R the real numbers
and C the complex numbers.

E[X] denotes the expectation of the random variable X .

Pr[A] denotes the probability of the event A, and Pr[A | B] = Pr[A N B]/Pr[B] denotes
the conditional probability of A given B.

1(...) is equal to 1 if the condition in the parentheses is true, otherwise it is equal to 0.
The acronym SIIRV stands for Sum of Independent Indicator Random Variables.

t = y/—1 unless it is used as a running index.
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Chapter 1

Introduction

1.1 The Prototype Average Value Argument

The probabilistic (counting) method in mathematics in its simplest form is the proof of the
existence of a certain object by examining the average behavior of an appropriate collection
of candidates. The prototype example of the probabilistic method in this form can be

considered to be the following obvious statement.

Proposition 1.1 Ifzy,...,2, € R and

w14+,

n

>a (1)

then for some j

z; > a. (2)

The usefulness of the method lies in the fact that the average (1) is often easier to compute
than exhibiting a specific z; for which (2) can be proved to hold.

This lack of the power to construct the solution to a specific problem is an inherent char-
acteristic of the method. Very frequently the probabilistic proof of a theorem is extremely
simple compared to a bare hands constructive proof, and that is to be expected since it
furnishes less: the mere existence of a solution to a problem rather than the solution itself.
Yet, one of the points that this thesis wants to make, is that very often a probabilistic proof
can easily be turned into a construction, if one assumes the point of view, that an efficient

algorithm is a construction.



2 Introduction

Let us rephrase Proposition 1.1 in the following more useful form. The measure space
Q is equipped with a nonnegative measure dP of total mass 1, and a real random variable

X on Q is just a measurable function X : @ — R.

Proposition 1.2 Let X be a real random variable on a probability space (2, dP) whose

expected value
E[X] = / X (w)dP(w)
Q

satisfies
Then there is w € Q such that

We remark that because of the obvious linearity property of the expectation of a random

variable

E[OLXl + ﬂAXvQ] = OéE[Xl] + ﬂE[XQ]

(whenever the right hand side makes sense), the expected value of quantities of interest in
the problems that follow are almost always very easy to compute or at least to estimate
very well. Notice that no independence is required of the pair X1, X;. (For a definition of
independence of a collection of random variables see for example [41].)

We proceed to give some examples.

1.1.1 An Edge-Colored K, with Few Monochromatic K,,’s

Let n, m, with n > m > 3, be two positive integers. We denote by K, the complete graph
on n vertices. We want to color the edges of K,, with two colors (say red and blue) so that it
contains few monochromatic copies of K,,. Of course it is easy to have many monochromatic
K,,’s by coloring every edge with the same color. For each subset A of [n] = {1,...,n}

with |A| = m we define the function (of the coloring)

1 if A is monochromatic,
X4 = )
0 otherwise.

Then the number X of monochromatic K,,’s is

X = Z XA- (3)

AC[n], |Al=m
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We color each edge of K, red or blue with equal probability 1/2 and independently of the
other edges (we toss a fair coin for each edge). The expected value of x4 is then 2(%)(72”)

and by the linearity of expectation and (3) we get

E[X] = (”) 91-(3),

m

We have proved:

Theorem 1.1 There is a 2-coloring of the edges of the graph K, which gives rise to no

m . >
more than (;)21_(2) monochromatic K, ’s.

We shall see later a way of turning this probabilistic proof into an efficient construction

of such a coloring.

1.1.2 A Large Sum-Free Subset of a Given Set of Integers

A subset F of an additive group is called sum-free if
r+y#z forall z,y,z€ E. (4)

The following theorem of Erdés [16], [2] has a beautiful probabilistic proof, which, to the
best of my knowledge, is the only proof known to date. See also [32] for a similar, but

computationally more efficient approach.

Theorem 1.2 Let A C N be a set of N positive integers. Then there is a sum-free subset
FE of A with
1
E| > -N.
7] > 5

Proof: TLet A = {ny < --- < ny} and choose any prime p > ny such that p = 3k + 2 for
some k € N. View the set A as a subset of the multiplicative group of units of the field Z,
(the integers mod p). Write

S={k+1,...,2k+ 1}

and notice that [S| > (p — 1)/3 and S is sum-free as a subset of Z,. Let ¢ be uniformly
distributed over ZX = {1,...,p — 1} and write

X =[50t A,
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where t - A= {t-nq,...,t-ny} and the arithmetic is in Z,. Since
X => 1" €A
j€s
and

1. N .
E[1(t7j € A)] = e for all j € Z)
(Z, is a multiplicative group), we have

_|SIN S N
Cp—1 3
This implies that there is tg € Z) for which X > N/3. Define then

E[X]

E=An(5'9).

It follows that E is sum-free as a set of integers (even more, it is sum-free mod p) and

|E| > N/3, as we had to show. O

1.2 The Prototype Large Deviation Argument

Often we associate several quantities Xi,..., X, with a random object. Typically their
averages E[X1],...,E[X,] will be easy to compute or estimate and their value will be
in the desirable range. Our objective is to have the values of the random variables X;
themselves in that range, simultaneously for all j.

Having found a proper distribution of random objects, namely one for which the expected
values E[X;] are of the desirable magnitude, we still need to bound the probability that

some X; deviates too much from its expected value. That is, we want an upper bound on
Pr[|X; — E[X;]| > d;, for some j]. (5)

The maximum allowed deviations d; are problem dependent.

It is usually the case that the best upper bound for this probability that we know is
Y Pr(lX; - E[X;]| > d;].
=1

So we aim for this sum (n can be infinite in some cases) to be less than 1. This implies that

with positive probability none of the bad events

B; ={|X; - E[X;]| > d;}, j=1,...,n,



The Large Deviation Argument 5

holds. In particular there is an object for which the quantities X; satisfy
E[X;]-d; < X; < E[X;]+d;, forj=1,...,n.

To achieve this we can use several well known Large Deviation Inequalities. The follow-

ing two are straightforward to prove.

Proposition 1.3 (Markov’s Inequality) If X is any nonnegative random variable with finite
expectation then for all a > 0

Pr[X > aE[X]] < (6)

S|~

Proposition 1.4 (Chebyshev’s Inequality) If X is any real random variable with finite
variance 0% = E[(X — E[X])?] then for all @ > 0

Pr[|X — E[X]| > ao] < % ()

The inequalities of Markov and Chebyshev are rather weak in most cases, but they are
applicable to virtually any random variable and this makes them very useful.
In the following theorems the random variable X is assumed to be of a special form: a

sum of independent random variables.

Theorem 1.3 (Chernoff [9], [3, p. 239]) If X = Xy + - -4+ X}, and the X; are independent
indicator random variables (that is X; € {0,1}), then for all ¢ > 0

Pr[|X — E[X]| > cE[X]] < 2¢EX],
where ¢, > 0 is a function of € alone
¢e = min {~log (¢*(1 4 6)71*9), ¢?/2}.

We call a random variable X which, as above, is the sum of indepenent indicaltor random
variables a STIRV.

Remarks on Theorem 1.3:

1. Observe that if X = X'+ X", where X’ and X" are SIIRV then we have

Pr[|X — E[X]| > ¢E[X]] < 4¢— o min{BIXT.EX"]}
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2. Since there is no dependence of the bound on k (the number of summands in X),
it is easy to prove that the same bound holds for X = 3772, X;, provided that
S, B[X,] < .

Theorem 1.4 [3, p. 236] Let py,...,p, € [0,1] and the independent zero-mean random

variables X1, ..., X,, have the distribution

X; =

1 —p; with probability p;,
—p; with probability 1 — p;.

IfX=a1 X1+ -+ a,X,, whereay,...,a, € [—1,1] then we have for all a > 0
Pr[|X| > d] < 2e72¢/7,

Theorems 1.3 and 1.4 are extremely useful. In the next section we show a nice application

of Theorem 1.3 to a problem in additive number theory.

1.2.1 An Asymptotic Additive Basis with Small Representation Function

A set E of positive integers is called an asymptotic additive basis of order 2 if the represen-

tation function
r(z)=rg(z)=|{(e,b) : a,b e E& a<b& z=a+ b}

is strictly positive for all sufficiently large integers z. In other words all sufficiently large
x can be expressed as a sum of two elements of £/. Examples of asymptotic additive bases
are the set N itself and the set {1,2,4,6,8,...}.

We are interested in bases for which the representation function is small. Notice that
in the previous two examples r(z) can be as large as C'z.

We present Erdos’ probabilistic proof that there is an asymptotic basis of order 2 such
that

cilogz < r(z) < cyloga (8)

for all sufficiently large . The ratio of the two absolute constants ¢; and ¢y can be made
arbitrarily close to 1.

Define the probabilities

1/2
Pr = K- <10g$)

X
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for the values of z for which the right hand side is in [0, 1], otherwise let p, = 0. The

constant K will be determined later in the proof. We define a random set F by letting
Prlz € E] =p,

independently for all 2. We show that with high probability the random set F has the
claimed property (8).

Define the indicator random variables
x;=1(j € E)

with mean values E[x;] = p;. We then have

[=/2]
(@)= Y XiXe—j
j=1

from which and the independence of y; it follows that

[z/2]
E[r(z)] = Z PjPr—j- (9)

Notice also that, for each fixed z, r(z) is a SIIRV. Easy calculations on the right hand side

of (9) allow the asymptotic estimate
E[r(z)] ~ IK?logz,
where I = 1-01/2(5(1 — 5))"'/2ds. We now define the bad events
1
A = {lr(2) — E[r(2)]| > JE[r(2)]}, 2= 1,2,3,....
Using Theorem 1.3 we can bound
1 -2 -
Pr[A,] < 2eXp(—§cl/21A logz) = 2z

where a = %01/217(2. All we have to do now is to choose the constant K large enough to
have @ > 1. We deduce that >, Pr[A;] is a convergent series and thus there is ng € N for
which

Z Pr[A,] < 1,

r>ng
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which implies that with positive probability none of the events A,, > ng, holds. This in

turn implies the existence of a set ¥ C N such that
1. .
5[[&'2 logz < r(z) < glK2 log =

for all x > ng which concludes the proof.

We emphasize the structure of the proof. First we defined an appropriate class of random
objects (random subsets of N'). We then showed that the quantities of interest (the numbers
r(z), @ € N) have expected values of the desired size. The last step was to show that, with

high probability, none of the quantities of interest deviates much from its expected value.

1.3 The Method of Conditional Probabilities for Deran-

domization

In Section 1.1.1 we saw that there is a 2-coloring of the edges of the complete graph K, on

n vertices such that the number of monochromatic copies of K, is at most

(ﬁ)y—(’;).

Assume that m is fixed and our task is to produce such a coloring of K,. Trying every
possible coloring clearly takes too much time since there are 2(3) possible colorings. Let
us describe a very general method of derandomizing the randomized construction that we
gave in Section 1.1.1, to get an algorithm for finding such a coloring in time polynomial in
n. We keep the same notation.

Let Aq,..., Ap, where k = (Z:L), be all the copies of K,, in K, (otherwise known as
m-cliques), and enumerate all edges of K, as ey, .. S €(n): Let the color of edge €; be the
random variable ¢;. We are going to define the colors a; € {RED, BLUE} one by one, for
J=1,...,(5). Define the events

R; = R;(ay,...,a;) = {(Cl,...,C(Z)) te =a1,...,C; = a;}.
Ry is the whole probability space. Intuitevely, R; represents our choices of colors up to the
j-th color.

As in Section 1.1.1 we define the 0-1-valued random variable x; to indicate whether A;
is monochromatic or not. We have X = Z;?:l X; and we already computed

m
2

E[X] = k2"~ (3).
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We are going to choose the sequence of colors aq, .. 5 (ny 8O that the function of j
2

E[X [ Rj]
is non-increasing. This is possible for the following general reason (the nature of the variable
X is immaterial here):
E[X | Rj—1(a1,...,a;-1)] =

1

§(E[X | Ri(ay,...,a;—1, RED)|+ E[X | Rj(a1,...,a;_1, BLUE))).
This means that at least one of the choices a; = RED or a; = BLU E will yield E[X | R;] <
E[X | R;—1]. Which of the two choices works can be decided (here the nature of X plays a

role) since we can explicitly compute
E[X | Ri(a1,...,qj)]

for any colors aq,...,a;. This computation clearly takes time polynomial in n. We proceed
like this until all colors have been fixed. Then X is completely determined

X = B[X | R(n)] < - < E[X | Ro] = B[X] < (;) 91-(%)

and our coloring aq, .. .,a(g) is thus a solution to our problem.

The very general applicability of the previous method, the so called method of conditional
probabililies, should be obvious. The most general context is the following. We have n
independent random variables €1, ..., €, which, without loss of generality, can be assumed
to have the distributions

)1 with probability p;,
9= { 0 with probability 1 — p;.

We also have a certain function

for which we can efficiently compute
E[X | e =0v1,...,6n = vy]

for any m and vy,...,v, € {0,1}. In particular we can compute E[X] = u. We can then

efficiently compute an assignment
€1 = Vl,yeeey €y = Vp, V1,...,0, €{0,1},

for which X < p. See [3, p. 223] for a more detailed description of the method as well as

other methods of derandomization.
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1.4 Introduction to the Problems Studied and Other Re-
lated Problems

We proceed to describe some of the problems that are studied in this thesis.

1.4.1 Littlewood’s Conjecture and the Cosine Problem

Both Littlewood’s Conjecture (now a theorem) and the Cosine Problem concern norms of
trigonometric polynomials whose coefficients are restricted.

Littlewood’s Conjecture [26]: For any set of N distinct integers ny < --- < ny we have

e’t?’bll‘ _I_ .. _I_ e’L’I'LNiL’

L2 C'log N (10)

for some absolute constant C'.
Above we denote by || f||; the L' norm 5= 62” |f(@)|da. It is clear that C'log N is the most
we can expect in the right hand side of (10) since [30, 62]

€T 4 2 4N . < log N.
The Cosine Problem: For any set of N distinct positive integers nq < --- < ny we have
‘min(cosnlx-l—----|—coanx)‘ >CvVN (11)

for some absolute constant C'.
This conjecture was stated by Chowla [11] in 1960.
It is easy to see that C'v/N is the best lower bound that one can expect in (11). Indeed

let
VN

glz) = e??

=1
and

flz) = Z cos (28 — 29)z.
1<j<k<V/N
Then f is a cosine sum since all the (\/Zﬁ) ~ %N frequencies 28 — 27,1 < j < k < /N, are
distinct and

1) = 5 (lo@) = lgP )

N | —



Introduction to the Problems Studied 11

This implies that |min, f(z)| < |¢|*(0)/2 = v/N /2. Thus the right hand side in (11) is best
possible, up to a multiplicative constant.

Let f(z) = Zé\le cosnjz and M = |min, f(z)|. Then M + f(z) > 0 so
M =M+ fll, 2 IFll, - M

which implies

M> 2
-2

Illy- (12)

So any lower bound for || f||; (Littlewood’s Conjecture) implies a lower bound on |min f]|
(Cosine Problem). Also worth mentioning is the following result of Pichorides [50]:
Mlog M + > log N.

N .
Z et

i=1

1

It was proved before the Littlewood Conjecture which obviously implies it.

The first result on Littlewood’s Conjecture was by Cohen [12], who proved

log N )1/8

11l > <m

The exponent was improved to 1/4 by Davenport [13] and Pichorides [48] improved it further
to 1/2. The iterated logarithm was removed by Pichorides [51, 52] and independently by
Fournier [22] who gave log'/? N as a lower bound. In [53] Pichorides obtained the true
power of the logarithm giving log N/(loglog N)? as a lower bound. The conjecture was
finally proved in 1980 independently by Konjagin [36] and McGehee, Pigno and Smith [45].

It is still an open problem whether the actual minimum of || f||, is assumed by the function

See also [49] for a history of both problems up to 1976.
According to our observation (12) above every new lower bound for the Littlewood
Conjecture implied a new bound for the Cosine Problem. Roth [54] was the first to work

directly on the C.P. and proved

log N )1/2

‘mgn f(x)‘ > <m
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improving the current lower bound due to the bound on the L.C. The best bound for the

C.P. known today is due to Bourgain [7]:
‘min f(ac)‘ > log” N

for some € > 0. This is super-logarithmic but it is not a power of N yet.

It should be pointed out that the two problems are not very similar. Littlewood’s
Conjecture is a translation invariant problem (|| f||, stays the same if we add a fixed integer
to all n;) but the Cosine Problem is not. In fact it is easy to see that if we translate the
frequencies n; far away so that (3 — ¢)ny > ny then |min f| > C(€)N. Another case where
Chowla’s conjecture (11) is known to hold is when the set of frequencies is sum-free [54].

The following variant of the C.P. has been studied by Odlyzko [46]. Let
0<p(z)=po+picosz+---+ p,cosnz (13)
with pq,...,p, nonnegative integers, and define

M(s)= inf
(S) p(l(%zspm

the infimum taken over all choices of p; € N. How large must M(s) be? In other words
we want to have polynomials as in (13) with as small py as possible. Odlyzko proved that

M(s) < (slogs)'/? and we shall improve this to M(s) < s'/ in Chapter 2.

1.4.2 The Salem-Zygmund Theorem

The following theorem is often used to estimate the size of a random trigonometric polyno-

mial

Theorem 1.5 (Salem and Zygmund [56], [29, p. 69]) Let fi(z),..., fu(x), be trigonometric

polynomials of degree at most m, and &1, ..., &, be independent zero-mean random variables

§= (14)

1 —p; with probability p;,
—p; with probability 1 — p;,

for some p; € [0,1]. Write

f(z) = i@mx)-
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Then, for some C > 0,

" 1/2
Prfifll, <€ (Z HfjHiologm) —1, asm — oo,

i=1

Theorem 1.5 was used in [46] to change the coefficients of a polynomial to integers without

a big loss:

Corollary 1.1 Let p(z) = po + Zé\le p; cos jz and define the random polynomial r(z) so
that p(x) + r(x) has always integral coefficients (except perhaps the constant coefficient):

N
r(z) =) & cosjz,
=1

with £ = 0 if p; is an inleger, else

¢ = |pj] —p; with probability [p;] — pj,
i= ) .

[p;j] —p; with probability p; — |p;|.
Then Pr (HrHOO < (Nlog [\7)1/2) — 1, as N — oo.

For the proof of the Salem-Zygmund theorem we need the following.

Theorem 1.6 Leta;;, i =1,...,n1, j =1,...,n2, be a matriz of complex numbers, such
that |a;;| < 1. Let also p1,...,pn, € [0,1] and the random variables &1, . ..,&,, be defined
as in (14). Then with probability tending to 1 as ny — oo

< Cv/nglogmny, foralli=1,... nq,

ng
> i
j=1

where C' is an absolute constant.
Proof: Define
n
Li(6) =Y aij&;.
=1

We can clearly work on the real and imaginary parts of the linear forms L; separately, so

we assume a;; € R. Define the bad events

A; = {|L:&)] > CV/nalogmi }
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Using Theorem 1.4 we get

Pr [AZ] < 26_202”2 logni/na _ 2’)11_202,
Now choose the constant C' = 1 to get

[UA <ZP1[A —

which concludes the proof. O
To complete the proof of the Salem-Zygmund theorem we note that it is enough to
ensure that f(z;) is small for a sufficiently dense set of points z; € [0, 27).
Since f is a trigonometric polynomial of degree at most m we can use Bernstein’s
inequality [30, p. 12]:
171, < milfil
Define z; = ilf)—?n fors=1,...,10m and the matrix

a;; = fi(z;), i=1,...,10m, j=1,...,n

Notice that for all e =1,...,10m
(z:) = D& filai) = Y &jaij.
i=1 i=1

From this and Theorem 1.6 follows that

T {|f(x2)| < C(nlogm)'?, for all z] —1 (15)
as m — oo. But the event in (15) implies that |f(z)| < C(nlogm)'/? for all & € [0,27) and
for a larger constant C. For assume that |f(z¢)| = ||f]|., and that

| | < 2T
BTN

Then, using Bernstein’s inequality,

|[(z0) — [(zk ||f/H —|f(900)|

|_1O = 10

and, since 27 /10 < 1, we get
1flloe = 1f(z0)] < CIf ()] < C(nlogm)'/2.

Remark: Theorem 1.6 has the following constructive equivalent [3, p. 225]. We give it only

in the case €¢; = £1, n; = ny but it holds in general.
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Theorem 1.7 Let a;; be a real n x n matriz, |a;;| < 1. We can then find in polynomial

lime signs €1,...,€, = 1 such that for every i =1,...,n we have

3" aijej| < C(nlogn)'/?,

=1
where C' is an absolute constant.

This of course means that the Salem-Zygmund theorem is equally effective, so that in most
of the applications described below the trigonometric polynomials that are claimed to exist

can actually be computed in time polynomial in the parameter of the problem.

1.4.3 The Salem-Zygmund Theorem — Applications

The Salem-Zygmund Theorem is used mostly in a form similar to Corollary 1.1 to prove the
existence of trigonometric polynomials with small maximum norm and whose coefficients
are restricted. Typically the situation is as follows.

We want to construct a polynomial with certain properties which satisfies certain re-
strictions on its coefficients. We are able to construct a polynomial which has the required
properties except that its coefficients are not exactly what we want. We then add to that
polynomial a random polynomial with appropriately chosen coefficients. Since our random
polynomial will be small in size (by the Salem-Zygmund Theorem) it will not change the
nice properties of our original polynomial by much, and at the same time will make its
coeflicients be what we want them to be.

We give several examples of this random modification.
Bourgain’s Sum of Sines with Small 7.*° Norm
Our intention is to find sums of sines
f(z)=sinnjz 4+ ---+ sinnyz

whose L* norm is as small a function of N as possible. We present Bourgain’s proof [6],

[29, p. 79], that there is a set of integers {ny,...,ny} for which
11l < N2,

Notice that the best we can expect is || f||., < N/2? since || f||., > ||fll, = CN'/2.
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We use the following variant of the Salem-Zygmund Theorem [29, p. 79] where the

variances of the random variables §; are taken into account.

Theorem 1.8 If f;,£; are as in Theorem 1.5 and also || f;|| < 1 and

ol

&
1=1

a? = E[¢3] = p;(1 - p;)
then

< C(z:a?logm)l/2 —1

J=1

o0

as m — OQ.

The polynomial that we are going to modify is

M2 ..
sin jx
gz)=a)y ——,
j=m 7

where M is a large integer and the parameter @ > 0 will be chosen later. It is well known
[62, v. 1, p. 182] and easy to prove that there is an absolute constant A, independent of M,
such that

l4llse < Aa.
So ¢(x) strongly satisfies the requirement that it is a sine polynomial with small L° norm.

We now modify it to have coefficients 0 or 1 by adding to it a suitable random polynomial.

Define the independent, zero-mean random variables (a will be less than M)

¢ = 1—a/j with probability a/j,
T —a/j with probability 1 —a/j,

for j = M,..., M?, with variance

E[éf]zﬁ(l—j—,) < %

Define also the random trigonometric polynomial

M2
r(z) = Z &sinjz
=M
and notice that the polynomial r(z) 4 ¢(z) has coefficients 0 or 1:

r(z)+ q(z) =sinniz + - - - + sinnyz,
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with n; € {M,..., M?*}. The expected value of N is

M? M?

E[N]= Y Prlg;>01= % %N alog M.

=M =M
It is easy to see using either Chebyshev’s inequality (E[N?] can easily be estimated to be
~ a®log? M) or Chernoff’s inequality, that

1
Pr [N > §alogM] — 1, as N — oo.

Using Theorem 1.8 and the estimate on the variances of the £; we get that, with high
probability,
M?2 1/2
Irll, <C (E Zlog(w)) < Ca'’?log M.
Y
=M

Thus with probability tending to 1 we have
N > CalogM
and
7+ glloe < lI7lloo + lglle < Ca'/?log M + Ca.

The best choice for a is then @ = log? M which implies N > C'log® M while [|r + ¢||., <
log? M, which concludes the proof.
To the best of my knowledge Bourgain’s result has not been improved or proved best

possible. I do not know of any other non-trivial (that is o(N)) upper bound for
lsinnqz + - - -+ sin nyz|| .

It is also not clear whether Bourgain’s theorem can be made effective in polynomial
time in N. This is so since we applied the Salem-Zygmund theorem on a polynomial of
length exponential in N. This sparsity is unavoidable, as it can easily be seen that any sine
sum with a small L* norm has to be sparse (take inner product with a conjugate Dirichlet

kernel).

Odlyzko’s Nonnegative Cosine Polynomial

Here we give Odlyzko’s proof [46] that there is a nonnegative cosine polynomial

0<p(z)=po+ picosz+---+ p,cosnz
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with pq,...,p, nonnegative integers, and such that
po < (slogs)'/?
where
s=po+ -+ p.=p0).

Several similar results are presented in [46] with different restrictions on the coefficients p;.
Consider the Fejér kernel

A . A .
. gl e 171 :
IXA(Q?):‘_Z: <1_A——|—1 et :1—}—22_: 1_A——|-1 COS ]
Jj=—A j=1
which is known to be nonnegative. Our initial polynomial will be ¢(z) = aK 4(z) where

a > 1 will be determined later. Write
q(z) = qo+ qi cosT + -+ -+ g4 cos Az

(notice that gp = ). We modify ¢ so that it has integer coefficients by adding to it the
random polynomial

r(z) = ricosz + -+ 74 cos Az,

where the independent zero-mean random variables 7; have the distribution
reo— [¢;] —¢; with probability ¢; — ¢;],
] l¢;] —q; with probability [g¢;] — g;.

Then the numbers r1 + ¢1,...,74 + g4 are always nonnegative integers.

It follows by the Salem-Zygmund theorem that
I7lle < C(Alog A4)1/?
with high probability. Write
M= ‘mxin ((ri+q)cosz+ -4+ (ra+qa) cosAx)‘

and notice that

M < go+|lrfl. < o+ C(AlogA)/? (16)

while if we write s = ¢(0) 4+ r(0) then (using the fact that K 4(0) ~ A)

s> aA—C(Alog A)/? ~ aA.
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The best choice for a is the one which equates the two terms in the right hand side of (16),

that is a = (Alog A)I/Q. We can now check that
M < (slog 5)1/3,

as we had to show.

Korner’s Flat Polynomials with Unimodular Coefficients

Littlewood [43] had asked whether there exist trigonometric polynomials
N .
fl@) =3 a;e”
i=1
with unimodular coefficients |a;| = 1,a; € C, such that

CIN'2 < [f(@) € CoN'2, for all @ € [0,2m), a7)

where C and Cy are two absolute constants. If only the upper bound is required in (17)
then these were known to exist even with a; = £1 (the Rudin-Shapiro polynomials that we
shall see in Section 1.4.4).

Korner [37] proved that the answer to this question is indeed affrimative. His proof
essentially consists of a random modification of a polynomial found by Byrnes which almost

fits the requirements.

Theorem 1.9 (Byrnes [8], Kérner [37, Lemma 4]) If n is the square of an even integer,

then there is M € N, absolute positive constants C,Cy and complex numbers

Cly. -y Cand2M 43
such that
(i) M = 0@,
(it) le1l,. .., |cams] <1, |ean—amyals - |Cantonmrgs| < 1,
(iii) lcont4al, - - oy [Can—anmrys| = 1,

(iv) Cin'l? < ‘Z?ZT2M+3 ;€97 < Cyn'/?,
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The only problem with the polynomial
N .
Q(m) = Z CjeZ]l‘7 with N = 4n + 2M + 37
=1

is that O(M) = O(N>/%) of its coefficients are of modulus at most 1, while the rest are

unimodular as required. We solve this problem by adding to ¢(z) two random polynomials

M43
r(z) = Z e’
7=1
4n+2M+3 -
R(z) = Z ;€T
j=4n—2M+4

where the independent zero-mean random variables 7; are such that for each j in the set
{1,....2M +3}yu{4n—-2M + 4,...,4n+ 2M + 3}
we always have
|rj + ¢l = 1.

One way to accomplish this is by letting each r; be equal to
s

+iy/1 - |e; P ==

|4

with equal probability. The Salem-Zygmund theorem then guarantees that
7)o + 1Rl < (Mlog M)? < N3/®log!/? N,

with high probability. Consequently the polynomial with unimodular coefficients r + ¢+ R,

and of degree N, satisfies
(Ci — N2 < |(r+ g+ R)(2)] < (Ca + e)N'/?

for any € > 0 and sufficiently large N. This solves the problem for this restricted set of N'’s
and the general result is easy to obtain by concatenating such a polynomial and a much
shorter random one (see [37]).

Using a much more elaborate argument, in which the Salem-Zygmund theorem again

plays a central role, Kahane improved Koérner’s result.
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Theorem 1.10 (Kahane [28], [29, p. 75]) For n sufficiently large there is a trigonometric

polynomial
flx) =) cje”
j=1
with |c¢;| = 1, which salisfies
[f(@)] = (14 o(1))n'/?
for all z € [0,27).

1.4.4 The Rudin-Shapiro Polynomials. Spencer’s Theorem.

The Rudin-Shapiro sequence [55, 57], [30, p. 33], is a sequence of trigonometric polynomials
of the form
2m-1
P.(z) = Z e, ¢ =+1, m=0,1,2,...,
j=0

which have small maximum

1Prlls < CllPull, = C272,

for a constant C'. We define the double sequence P, ), inductively as follows. For m = 0

we define Py(z) = Qo(z) =1 and
Prti(z) = Pu(z)+ €7 Qum(z),
Qmt1(z) = Pulz) =27 Qu(z).
It can be verfied that
| Pro1(2)* + Qg1 (2)]* = 2(| Pra(2)]* + @ (2)[*).
From this it follows immediately that for all m
Pa(@)f +1@n(o) = 274

and thus
1Pl < V2272

The Rudin-Shapiro polynomials have degrees which are powers of 2 but for every n we can
get (by concatenating them) a polynomial of degree n, whose coefficients are +1 and whose

maximum is bounded by a constant multiple of \/n.
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The Rudin-Shapiro polynomials are very explicitly constructed and their structure is
perfectly clear from their simple definition. Yet, if one changes the problem just a little bit
the inductive construction cannot be salvaged at all. Suppose that we want to construct
polynomials of degree n, whose coefficients are 0 outside a given set £ C {1,...,n} and on
FE their coefficients are restricted to be +1. Clearly the inductive definition cannot work
here. Essentially the best we can do is take a random polynomial and hope for the best.

Let r(z) = Y .cp r;€"" be a random polynomial with the independent zero-mean ran-
dom variables r; being +1 with equal probability. Then the Salem-Zygmund theorem gives
that, with high probability,

Il < C(Ellog )2,

In the particular case where |F| > n the result is clearly suboptimal, at least in the case
where F is an arithmetic progression and thus we can have Rudin-Shapiro polynomials on
it. Tt turns out that for any E we can find signs r; for which ||r||_ < Cn'/2.

For this we need the following important theorem of J. Spencer which in certain cases

is an improvement over plain randomization.

Theorem 1.11 (Spencer [59], Gluskin [23]) Let a;;, i = 1,...,n1, j = 1,...,n9 be such
that |a;;| < 1. Then there are signs €y, ..., €,, € {—1,1} such that for all ¢

Eeja” < Cnl/Q. (18)

=1

Notice that there is no dependence of the bound on ny. Compare with Theorem 1.6.

Corollary 1.2 Let fi(z),..., fu(z), ||fill., < C, be trigonometric polynomials of degree at

most m. Then there is a choice of signs e1,...,¢, € {—1,1} such that

n

Zejfj < Ccm'/?,
j=1 o

Proof of Corollary 1.2: Fori =1,...,10m, j = 1,...,n define a;; = f;(z;), where

x; = 2m Let €1,...,€, be the sequence of signs given by Theorem 1.11 for the matrix a;;

and write f = 37"_; €; f;. There is g € [0,27] such that |f(zo)| = ||f||,,- For some k& we

have |z — 20| < {5=-. By Bernstein’s inequality, || /||, < m[|f].,, we get

[f(zo) = flax)] < ||f I 2 f(ao)|

OO_10
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which, since 27 /10 < 1, implies
£l = 1£(z0)] < Clf(zp)| = C|D €jar;| < Cm!/?
7=1

and the proof is complete. O
Using Corollary 1.2 on the functions f;(z) = €% for all j € E we conclude that there

exist signs €; such that

Z ej-eijx < Cy/n.
oo

JjEE
Thus on any subset F of {1,...,n} there is a polynomial with coefficients +1 with maximum
less than C'y/n.
Remarks

1. The proof of Spencer’s theorem uses in an essential way the fact that the numbers ¢; can
take on the values £1. The proof does not work if €; can take the values 1 — p; or p; for
some p; € [0, 1], while randomization (Theorem 1.6) applies to this case too. This situation

can be remedied a little by the following generalization of Spencer’s theorem [59, 44].

Theorem 1.12 Let a;;, ¢ = 1,...,nq, j = 1,...,n9, be such that |a;;| < 1. Let also
P1y---sDny € [0,1]. Then there is a choice of €¢; € {—p;,1 —p;}, 7 =1,...,n9, such that,
for all 1,
n
Zéjaij < Cn}/Q. (19)
=1
We essentially prove this theorem in Chapter 2, Section 2.2, in the form of a result on
trigonometric polynomials.

Despite Theorem 1.12 we do not have a generalization of the form of Theorem 1.8. That
is, while Theorem 1.12 is a generalization in the nonsymmetric case, the bound that we get
does not involve the “variances” of the ¢;’s. In other words we cannot take advantage of
the fact that the p;’s might be small.

An example might clarify the situation more. Suppose that we want to find a polynomial

N ..
flx) =) eje’”
7=1
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with small || f||., and such that ¢; € {—p;,1 —p;} forall j =1,...,N. Then the Salem-

Zygmund theorem (in the form of Theorem 1.8) gives
~ 1/2
1/l < (Z pi(1 - pj)logN)
i=1

while Spencer’s theorem (in the form of Theorem 1.12) gives

Il < N2

If the numbers p; are bounded away from 0 and 1, then clearly Spencer’s theorem does

better, but not necessarily if

N N
S pi(1—py) = o(i—=).
= log N

It would be very interesting to know what is the best possible result when
N
Y pi(1—p;) = o(N).
=1

2. Unlike plain randomization (Theorem 1.6) it is not known whether Spencer’s theorem can
be efficiently derandomized. The reason for this is that the proof is not purely probabilistic.
At some point in the proof the existence of two £1 assignments of the ¢;’s is claimed such
that all sums (for all 7) 2?11 a;;€; take approximately the same value for both assignments.

No way is known to make this existential claim constructive.

1.4.5 Uchiyama’s Theorem

The following theorem was proved by Uchiyama [61]. Tt is related to both the Littlewood
Conjecture and the Cosine Problem. In Chapter 4 we shall give some constructive analogs

and improvements.

Theorem 1.13 Let A= {ny < --- < ny} be a set of N positive integers. Then there is a
subset £ C A such that

S| > CoVN, (20)

JEE

1

where C' is a posilive constant.
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Proof: Let g(z)=3;c4€“" and
fw) =3 e,
j€eA
where €; = £1 with equal probability and independently. By the triangle inequality it
suffices to show that there is an assignment to ¢; that makes ||f[|, > v N. To this end we

use Holder’s inequality in the form

A2 < 112 1017

We always have ||f||2 = N and

2

|f|4 — ZejEkei(j—k)x
5k

Thus writing (the indices j, k& always run through A)

r(z) = Z €€k

r=75—k

we get

1 2
171 = 52 [ 171" = X re)

a:EN
and

E(Ifl[i]= 2" Elr*(2)l = > Eleecser]

zeN j—k=j5'—Fk

and the only terms that will survive are those with j = j', k = &/, thus
4 7
E[| /]3] = N?.

This implies the existence of an assignment of the ¢; such that || f||3 < N2. Using Holder’s
inequality for this assignment we get || f||; > N'/? which concludes the proof. O
A very similar proof but applied on cosine sums, instead of sums of exponentials, shows

that there is always a subset £ C A such that

Zcoij >>\/N.

JjEE 1

Since the absolute value of the minimum of a cosine sum dominates its ! norm we also get

min E cosjz| > VN.

JEE
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1.4.6 By[g| Sets of Integers

We introduce some concepts of Additive Number Theory. Let £ = {ny < ny < ---} be
a finite or infinite set of nonnegative integers. We define a corresponding representation

function on N
r(z) =rg(z;2) = |{(a,b) : a,be E& a<b& z =a+b}| (21)
A set E is in the class By if r(2) <1 for all 2 € N. In other words all sums of the form
a+b, abeE, (22)

are distinct except for permutation of ¢ and b. It is not hard to see that this condition is

equivalent to requiring that all differences
a—>b,a,be E, a#b, (23)

are distinct. The terminology “Sidon set” is sometimes used to describe Bj sets but we will
avoid it since it has a rather different meaning in classical harmonic analysis.

An immediate generalization of (21) is the following
ri(z) =rp(e;h) = {(a1,...,a1) 1 g e E& oy <---<ap&z=a1+ ---+ap}]. (24)

We call a set 2 a By, set if r(z) <1 for all z € N. We call it a Bp[g] set if r(z) < g for

all x € N. Thus a By, set is a set of which all sums of the form
(L1+---+(Lh, a; €E7 aq S "'Safw

are distinct.

The Density of Finite Bj[g] Sets

The main question that we are interested in is “How big can a Bp[g] subset of {1,...,n}
be?” Considerably more is known when g = 1 (B}, sets) and among B} sets much more
is known about B, sets. The reason is roughly that when g > 1 sets of the type Bj[g] do
not admit any characterisation in terms of distinct differences like (23). Even for B;[2] sets
very little is known.

Define Fj(n) to be the maximum size of a By, subset of {1,...,n}. Also let F} 4(n) be

the maximum size of a Bj[g] subset of the same set. It is easy to see that

Fi,g(n) < Cpgnt'™. (25)
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Indeed by just counting distinct sums we can get
F,

Fhg(n) < (ghh)/mnt/% 4 o(nt/h),

which implies

The quantity of interest is the constant Cj 4 in (25).

For h = 2,9 = 1 we can do better by counting the distinct positive differences instead

(Fz(n)) <n
9 b

Fy(n) < Vont/? 4 0(n1/2).

of the sums. We have

which gives

This is far from best possible though. Erd6és and Turan [20] have proved
Fy(n) < n'? 4+ 0(n'/4). (26)

Not only is the coefficient of the major term better but the error term is non-trivial too.

On the other hand it has been shown by Chowla [10] and Erd6s [20, Addendum] that

Fy(n) > n/? — o(n!/?). (27)

Their method uses a result of Singer [58].

For By sets Lindstrom [42] has proved
Fy(n) < (8n)* + O(n!/®). (28)
In Chapter 3 we will prove that for all m
Fy(n) < (m(m!) /2" 0! /2 4 O(n!/4m). (29)

The coeflicient of the major term that can be obtained by just counting distinct sums or
differences is (2m(m!))!/?™. Notice also that we get a non-trivial error term, and that (26)
and (28) are subsumed by our result. This result has also been proved independently and
by a completely different method by Jia [39]. Graham [24] has proved an analogous result
for Fyp—1(n):

Fom_1(n) < (m!)¥ Cm=pt/@m=1) 4 !/ (4m=2)y, (30)
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The Density of Infinite Bj[g] Sets

While it is possible to have a By subset of {1,...,n} with about \/n elements, the following
theorem of Erdés shows that the situation is quite different if we look at infinite By sequences

of high lower density.

Theorem 1.14 If the sequence {ny < ny < ---} C N is By then we have

N
lim sup ——2— > 0. 31
i J*logy (31)

Thus we cannot have a (finite or infinite — the infinite sequence can be obtained from finite

sequences by a diagonal argument) By sequence which satisfies for all j
n; < j2.

On the other hand it is easy to see that we can have an infinite By sequence with large

upper density.
Theorem 1.15 There is a By sequence {n; < ny < ---} C N for which
liminf 22 < A,
J J

where A is an absolute positive constant.

Erdos [60], [25, p. 88] proved Theorem 1.15 with A = 4 and Kriickeberg [38], [25, p. 89]
gave A = 2. This is still the best known constant, and it is not known whether it can be
lowered to A = 1 to match the Erd6s-Turdn bound (26).

For a long time the B sequence with the highest lower density known was the one
produced by the so called greedy method. Let ny = 1 and having found nq,...,n; choose

nky+1 to be the smallest positive integer = that is not in the set
{a+b—c : abyce{ny,....,np}}.

It then follows easily that the sequence n; is By and that n; < j3. The gap between this
sequence and Theorem 1.14 still stands except for the following result of Ajtai, Komlés and

Szemerédi [1].

Theorem 1.16 There is a By sequence {n; < ny < ---} C N such thal

j3
n; K <logj) .
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The following theorem of Erdos and Rényi deals with dense infinite Bs[g] sequences. The

proof is once again probabilistic.

Theorem 1.17 (Erdds and Rényi [18]) For every § > 0 there is an integer g and a Bs[g]
sequence A = {ay < ag < ---} such that

G < j2+67 (32)
for all j > 0.

Proof: Let § € (0,1) be given. Let A be a random set with
Prlz € A] = p,

independently for all x € N, where

P = p-1/2-8/2

Then with high probability A(z) > 2/27%/2 for all 2, which implies (32). Write, as usual,

X;j = 1(j € A). Then we have
[=/2]
71=1

and we can estimate
E[r(z)] < C’m_'s,

where C' = 13/2(5(1 — 5))~1/27%/2(s. Define the bad events

As = {r(z) > g} = {r(z) > (E[%WEW)]}.

We now use Theorem 1.3 with

g §
€= ———1>Cgz’,
E[r(z)]

observing that

c. ~ eloge, as € — 0.

We get
Pr [A:E] < 26—2051‘3[7"(17)] < QE—BIOgE(EE[T($)]) — 26—3g10g57

and using the estimate on E[r(z)] we get

Pr[A,] < Ce~C98logs — Cp=Ca?,
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Choose now g = C/4§, for large enough C, to get Pr[A4,] < 272 and thus y__ Pr[4,] < oo.
So there is ng € N for which

Z Pr[A,] < 1,

r>ng
so that with positive probability none of the bad events A,, = > ng, holds. Now discard
all elements of the random set A up to ng to get a By[g] set with the desired growth. O
See also the paper [17] by Erdés for further results and conjectures on additive number

theory.



Chapter 2

On Nonnegative Cosine
Polynomials with Nonnegative

Integral Coefficients

2.1 Introduction

We consider nonnegative cosine polynomials of the form
0<p(z)=po+picosz+pycos2z+---+pycosNz, z€l0,2n],

where p; > 0. We also write p(0) = po. Notice that p(0) = E;-V:O p; is the maximum of
p(z). We are interested in estimating the size of
M(s)= inf p(0
(s) = inf B(0)
for s — 0o. That is, we want to find polynomials of this form for which pg = % fo% p(z)dz
is small compared to the maximum of p(z).
If no more restrictions are imposed on the cosine polynomial p(z) then M(s) = 0 for all

s. This is because the Fejér kernel

A . A .

has constant coefficient 1, has K 4(0) > A and is nonnegative.

31
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If we restrict the coefficients py,...,pn to be either 0 or 1 we have the classical cosine

problem (see Section 1.4.1), about which we know that for some € > 0
208 s & M(s) < s*/2. (33)

The upper bound in (33) is easily proved by considering the polynomial

A
flz) = (Z cos 3 z)? (34)

A
= A+ - Zcos (2- R )+ Z (cos (3]C + 31)33 + cos (3]C — 31)37) . (35)
] 1 k=1
k>l

All cosines in (35) have distinct frequencies. Define

fi(z) = f(z 1 ——Zcos 2.3,

2
Then fi(z) > 0, f1(0) > A% E(O) < A and f; has non-constant coefficients which are
either 0 or 1. The lower bound in (33) is much harder to prove and is due to Bourgain [7].
Earlier, Roth [54] had obtained M(s) > (logs/loglog s)!/2.
From this point on, we will study the case of py,...,pn being arbitrary nonnegative

integers. This case was studied by Odlyzko [46] who showed that
M(s) < (slog 3)1/3. (36)

See Chapter 1, p. 17, for the proof.
Odlyzko studied this problem in connection with a problem posed by Erdos and Szekeres

[19]. The problem is to estimate

E(n) = inf (1-
(n)=in IEE)I( 1;[ 2®
where aq,...,a, may be any positive integers. The following inequality holds (see [46])
log E(n) < M(n)log(n) (37)

so that Odlyzko’s result implies log E(n) < n'/3log**n
In this chapter we replace the random modification in Odlyzko’s argument with a more

careful modification, based, again, partly on randomization. We use Spencer’s theorem
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(Corollary 1.2) which in some cases does better than the Salem-Zygmund theorem. We
show in Section (2.2) that, when pq,...,pn are restricted to be nonnegative integers, we
have
M(s) < s'/3.

By (37) this implies log E(n) < n'/®logn. The method employed has appeared in [59, 44]
and is also similar to that used by Beck [4] on a different problem, posed by Littlewood.

In Section 2.3 we give a deterministic procedure which, given a polynomial p(z) with
nonnegative, integral Fourier coefficients (in other words p; is a nonnegative even integer,
for 7 > 1) and with p(0) < (p(0))®, for some a > 0, produces a sequence of polynomials
p=p9,pM p3 . such that deg p(™ — oo, p{™(0) = 0o and

(P™)(0) < (p(0),

This shows M(s) < C's'/%, with C, a dependent on the initial p only.
This has appeared in [31].

2.2 Proof of the Inequality M(s) < s'/3

Since Corollary 1.2 only allows us to choose random signs, we cannot use it directly (as
we used the Salem-Zygmund theorem) to modify the coefficients of a polynomial to inte-
gers, while controlling the size of the change. In this section we show how to modify the
coefficients little by little, to achieve the same result.

Let a > 0 and define
A
a(z) = aKa(z) = Ea]- cos j.
j=0
Suppose € > 0 and the nonnegative integer kg is such that for some nonnegative integers b;
la; — b;27%| <€ forall j=1,..., A

We shall define a finite sequence of polynomials

A
a(z) = ag + 3 b;27% cos jz, aM(2), ..., a*)(z)

=1

inductively, so that if
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then for each j =1...A,

ag-k) - bgk)Q’“"“O (38)

(k)
g
If b;k), 7 > 0,1is even then ag-kﬂ) = a;k). Else define

for some nonnegative integers b.’. We define inductively the coefficients of a(¥*1) as follows.

ot = (P Flgk—ko, (39)

where eg-k) € {—1,1} are such that

Z egk) cosja|| < CAYZ (40)
¥Fodd
(k)
i
preservation of (38) by the inductive definition. We deduce from (40) that

The existence of the signs €.’ is guaranteed by Corollary 1.2. Notice that (39) implies the

a1 — “(k)Hoo < C2khoAl/2, (41)

The polynomial a(*0) has integral coefficients (except perhaps for the constant coefficient).

Summing (41) we get

ko)

<o a0 -

=

< Ae+ CAV2,

Choose € = 1/A to get

o=

< CAV?,

On the other hand, the coefficients of a and a(%) differ by at most 1 and this implies that

for the nonnegative polynomial

plz) = a(ko)(m) + Ha _ qlko)

o0

we have

p(0) > a(0)—A>CaA- A, (42)
<a+CAY2 (43)

3

—~
e

~—
[l

a+ Ha — ko)

Select @ = A'/2 to get p(0) < A2 and p(0) > A%/2. Since p has integral coefficients, we
have exhibited a polynomial that achieves M (s) < s1/3, and the proof is complete.
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Remark on Cosine Sums
Applying the method of the preceding proof on the coefficients of the Fejér kernel K 4(x),

one ends up with a nonnegative polynomial of degree at most A, which is of the form

k
p(z)=po+2 E cos Ajz,

7=1

where X; € {1,..., A} are distinct. We have [|[K4 —p||., < AY? which, since py =

1 2T

5= Jo p(x)dz, implies

po K A2 and p(0) > A.
Thus p is a new example of a cosine sum that achieves the upper bound in (33). It is
not as simple as the one mentioned in Section 2.1 but the spectrum of it is much denser:
LA+ O(A'Y?) cosines with frequencies from 1 to A.

Since the Dirichlet kernel

A
Dy(z) = Z €T (44)

j=—A
A
= 1—}—22coij (45)
j=1
_ sin(A+ )z 16
B sin 5 (46)

2

has a minimum asymptotically equal to —%A, it is conceivable that one may be able to
raise this number of cosines from A + O(AY?) to

(1- 3%)/1 + o(A).

In other words, since
A

2
min Z cos jx = —3—A + o(A),
z T

J=1
one must remove at least 7= A cosines from the sum, in order to make its minimum be o(4),

in absolute value. However we show in Section 3.2, that 1A + O(A'?) is best possible.

2.3 The construction

Suppose we are given a polynomial p(z) > 0 of degree d, whose non-constant coefficients

are even nonnegative integers, which satisfies
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for some @ > 0. Define the sequence of nonnegative polynomials p = p(), p(®) p3) .

with the recursive formula
pF(z) = pB((2d + 3)z) - p(2). (47)

Since p has even non-constant coefficients, the Fourier coefficients of all p(¥) are nonnegative
integers. The spectrum of the first factor in (47) is supported by the multiples of 2d + 3,
and that of the second factor is supported by the interval [—d, d]. This implies that

(P*IY(0) = (p™)(0)5(0).

We obviously have p*+1)(0) = p(¥)(0)p(0). We conclude that for all k& > 0
(p*)7(0) = ((0))" and pM(0) = (p(0))*

and consequently

So, if s is a power of p(0), we have M (s) < s*, and for any s we have M(s) < Cs*, where

C = (p(0))~.

As an example we give

10
p(z) :4+4cosx+22coij

=2
which can be checked numerically to be positive and has constant coefficient p(0) = 4 and
p(0) = 26. This gives a = log4/log26 = .42549 - - - .

In view of the construction above, finding a single polynomial p with p(0) < (p(0))?,
with @ < 1/3, will prove that the result in this Chapter is not the best possible. This
example was actually found by a computer but if no more insight is gained into how these
good “seed” polynomials look like, the computing time grows dramatically as we increase

the degree of the polynomial.



Chapter 3

The Density of By |g] Sequences
and the Minimum of Dense

Cosine Sums

3.1 Introduction

Let E be a set of integers. For any integer  we denote by rg(z;h) the number of ways
can be written as a sum of & (not necessarily distinct) elements of £. Two sums ay+---+ay,
and by + ---+ by, are considered the same if the a;’s are a permutation of the b;’s. A set
of integers is called a Bp[g] set if rg(z;h) < ¢ for all z. A By[1] set is also called a B, set.

We are interested here in the density of Bj[g] sets. Considerably more is known about
Bj sets than general By[g] sets ([25, Ch. 2] is the principal reference). The main reason for
this is that a set £ is By if and only if all differences x — y, for 2,y € F, z # y, are distinct.
Nothing similar is true for Bs[g] sets, for example.

Let Fj,(n) be the maximum size of a By, set contained in {1,...,n}.

It is obvious that Fj,(n) < Cn'/" and it is the size of this constant C' that we care about

in this chapter. For h = 2 Erdés and Turan [20], using a counting method, have proved
Fy(n) < v/n+0(n'/4). (48)

(The constant one obtains by just counting differences is v/2.) For h = 4 Lindstrém [42],

using van der Corput’s lemma, has proved

Fy(n) < (8n)Y4 + 0(n'/?). (49)

37
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In the other direction it has been shown by Chowla [10] and by Erd6s [20, Addendum] using
a theorem of Singer [58] that

Fy(n) > v/n — o(v/n) (50)

and more generally it has been proved by Bose and Chowla [5] that
Fy(n) > n'" — o(n!/™). (51)

The Cosine Problem: Chowla [11] has conjectured that for any distinct positive integers

np <-:---<ny

N
— min Y cosnjz > CV'N. (52)
=

This conjecture has remained unproved and the best result known to date is due to Bourgain

[7]:
N
— min Z cosn;x > log" N
T 4
for some ¢ > 0.
It is easy to see that there are sequences {n;} for which the left hand side of (52) is
bounded above by CvN. We proved in Chapter 2, p. 35, that there are very dense such
sequences: we can have ny < 2N. (This can also be proved using (50).) In Section 3.2 we

prove that the density above is best possible.

In Section 3.3 we use this result to prove the following theorem.
Theorem 3.1 Let h = 2m > 2 be an even integer. Then
NYE 1k 1/2h
Fi(n) < (m(m)?) " nl/" 4 O(n!/?h). (53)

Theorem 3.1 contains the results of Erdés and Turdn (48) and Lindstréom (49) as special
cases. It was also proved recently by Jia [39] who used an elementary combinatorial argu-
ment.

In Sections 3.4 and 3.5 we show that allowing g > 1 indeed helps. We exhibit a B;[2]
subset of {1,...,n} with v/2n 4 o(/n) elements and an infinite B,[2] sequence 1 < ny <
- < nj < ---for which
ny

L=,

lim inf
Y
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3.2 Dense Cosine Sums

It was proved in Section 2.2 that for every positive integer N there are positive integers

1< Ay << Ay < 2N such that
N
—min »_cos A\jz < CVN. (54)
1

We now prove that we cannot have more dense cosine sums whose minimum is small in

absolute value.

Theorem 3.2 Let 0 < f(z) = M + Z{V cos Az, with 1 < Ay < --- < Ay < (2-¢)N, for
some € > 3/N. Then
M > CéN. (55)

Proof: We use the following theorem of Fejér [21]:

Theorem 3.3 Let p(z) be a nonnegative trigonometric polynomial of degree n and constant

term p(0) = 1. Then p(0) < n+ 1.

The obvious inequality above is p(0) < 2n+1. We note that Theorem 3.3 is a corollary of the
well known theorem of Fejér and Riesz which states that every nonnegative trigonometric
polynomial can be written as the square of the modulus of a polynomial of the same degree.

To use Theorem 3.3 we first need to “smooth” f. Define p(z) = f(2)K,(z) > 0, where

Kq(z) = z“: <1 — %) €T > )

j=—a

is the Fejér kernel of degree a (the parameter a will be determined later). Then

degp < (2—¢€)N +a,
. 1
p0) = M+- 3 (a=2)),
a
Aj<a
p(0) = (M +N)(a+1).
Observe that p(0) < M + a/2 and apply Theorem 3.3 to get

p(0) < (1 + deg p)p(0)
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or
Myl (M + N)a
2 2—-€e)N+a+1
1
a.
2—€¢+(a+1)/N
Let a = eN/2 to get
M > <; — 1) eN
4—€+2/N 4
S (e — 2/N)€N
- 16
2
- ‘ *N7
3-16

since € > 3/N. O

3.3 An Upper Bound for F,(n), h Even

Let A = 2m > 2 be a fixed even integer. We shall give an upper bound for the size of By

sets contained in {1,...,n}. Theorem 3.2 is the main tool. In this section C' denotes an

arbitrary positive constant which may depend on h only.

Let £ = {ny,...,nt}, 1 <ny < --- < ng <n, bea By set. This means that all sums

ai + ---+ ap with a; < a;y1 and a; € E are distinct. Consequently the sums of the form

A T
with
a;,b; € E, a; < ajq1, bj <bjpq and a; # b;
are all different. Indeed, if 327" a; — 377" b; = 327" @’ — 377" b’ we have

Eaj—}-zbg-zza;—l—ij
1 1 1 1

and, since {n;} is a B} sequence, the collection of terms in the left hand side is the same

as that in the right hand side. But the a;’s have been assumed different from the b;’s, so

/.

we must have a; = aj

and similarly b; = b%, for all j.
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Define the nonnegative polynomial

h

k
f(.’E) — Zeinja:
71=1

k ™k m
— einj‘x Z e—injx
7=1 7=1

= 7(z)+2(m!)? ( Z cos (Z a; — Z bj)m) .

aj,b; satisfy (56)

The polynomial r(z) consists of O(k"~1) terms with coefficient 1, and thus, for some C' > 0,

CEM 4 Z cos(z a; — ij)a: > 0.
aj,b; satisfy (56) j=1 i=1
Write Ay < --+ < An, N = k"/(2(m!)?) — O(k"1), for the positive sums of the form
T a; — > 7" b; (they are all different). Using Theorem 3.2 we conclude that

1

k" — O(kh—l)) . (57)
This implies
E < (m(m)?) V!t 4 oo(nth.

The error term can also be bounded as follows. Write k = Cyn'/" + R, where R > 0 and
Cy = (m(mH?)YE, Then n = ((k— R)/C1)", and substituting this in (57) and matching

the second largest terms we get
R=0(K'?) = 0(n'?"),

which concludes the proof of Theorem 3.1.
Theorem 3.1 improves the estimate one gets by just counting the A;’s. Indeed, there are

N = k"/(2(m!)?) — O(k"1) different A;’s in {1,...,mn} so we only get

k< (2m(m!)2)1/h n'h 4 o(nt/h). (58)

3.4 Dense Finite B;[2] Sequences

As mentioned in Section 3.1, for each n there is a By sequence 1 < ny < --- < ngp < n with
k = \/n+ o(y/n). In this Section we show that if one allows up to 2 sums to coincide we

can have denser sequences. We do this by interleaving two dense B sequences.



42 The Density of By[g] Sequences and Cosine Sums

Theorem 3.4 For each n there is a B3[2] set B C {1,...,n} with
|B| = V2n + o(y/n). (59)

Proof: By (50) there is a By set A C {1,...,[n/2] — 1}, with |A| = \/n/2 4 o(y/n). We
shall show that the subset
B=2AU(2A+1)

of {1,...,n} is By[2] which proves the theorem.

The proof is by contradiction. Assume that we have the non-trivial relations

x1+ 1y =22+ y2 = 23+ ys, (60)

with z;,y; € B and let z = 21 + y;. Look at z; + y; mod 2. There are three possible
patterns: 0+ 0, 1+ 1 and 0 + 1.

If z is even then only 040 and 14 1 may appear in (60) and we have either a relation of
the pattern 0+0 = 0+ 0 or a relation of the pattern 1+ 1 = 1+ 1. Both cases contradict the
fact that A is By, the first after just dividing by 2, the second after canceling the remainders
and then dividing by 2.

If z is odd then only the pattern 0 4+ 1 appears in (60) which can be rewritten as

2a1 + (24} + 1) = 2a3 + (245, + 1) = 2a3 + (2a5 + 1) (61)
with a;, a;- € A. By canceling 1 and dividing by 2 we have
ar + a\ = ay + al, = a3z + af.

But A is By so for at least one of these relations, say the first one, we have a; = a9 and
a} = a% which contradicts the fact that the first relation in (61) is non-trivial. O

Jia [40] recently improved (59). He constructed a By[2] set B C {1,...,n} with

B = V3 + o /). (62)

3.5 Infinite By[2] Sequences with Large Upper Density

The situation is rather different for infinite B;[g] sequences. Erdds [60] has proved that

there is no infinite By sequence {n;} with n; = O(4?). Infinity is not the problem here but
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the fact that we require n; < C'j2 for all j and not just for the last one, as we did with
finite sequences.
For the upper density of the sequence {n;} Erdés [60] proved that it is possible to have
lim inf n_; <4
7]
and Kriickeberg [38] later improved this to

liminf 22 < 2. (63)

7]
It is still unknown whether the number 2 in the right hand side of (63) can be reduced (it
cannot be less than 1 by (48)).

We now show that for a Bs[2] infinite sequence this is possible.

Theorem 3.5 There is a B3[2] sequence {n;} with

i

liminf —3

inf =5 = 1. (64)

Proof: The theorem will be proved if we show that any B3[2] sequence 1 < ny < --- < ng
can be extended to a sequence 1 < ny < -+ < ng < ngy1 < -+ < ny, such that n; =
12+ o(1%).

Write A = {nq,...,n;} and & = ny. Take B C {22 + 1,...,2%} to be a By set with
|B| = 22 4 o(z?) (this is possible by (50)). In what follows a; € A, b; € B and d; € D (to
be defined below).

Consider the relations of the form
ay + bl = a3 + bg. (65)

Such a relation may be written as a1 — ay = by — by. But B is a B, set, so all differences
by — by are distinct, which implies that a pair a1, a3 € A may appear in (65) only once. Thus

there are O(k?) = O(x) of these relations which may involve O(z) elements of B. Let then
D = {b € B :b does not appear in any relation of the form (65)} (66)

and £ = AU D. Obviously |E| = 22 4 o(2?). We show that F is a B3[2] set.
First note that the relations of the form
ai+ay; = az3+d;
a1 +ay; = dy+ds
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are not possible (the left hand side is too small) and A is itself B3[2]. This proves rg(a; +
az;2) <2 for all a1,ay € A.

It remains to be checked that rg(a; +dy;2) < 2 and rg(dy +dz;2) < 2. By passing from
B to D we eliminated all relations of the form (65) and so the only remaining non-trivial

relations that we have to check are of the form
aq + d1 = d2 + d3. (67)

These are indeed possible. Assume y = ay + dy = dy + d3. We have to show that these are
the only ways that y can be written as a sum of two elements of E. But this is obvious since
y = db + df is impossible (this would mean dy + d3 = d 4 d5 which contradicts D in By),
y = a} + a} is impossible because of size and y = a} + d| would mean that o} + d} = a; + d4
which we took care to eliminate in (66). O

Remark: Because of the result of Section 3.4 the previous theorem is not necessarily best

possible.



Chapter 4

A Construction Related to the

Cosine Problem

In a result related to the Cosine Problem (see Chapter 1, p. 10) Uchiyama [61] proved that

for any sequence of N distinct positive integers ny < --- < ny there is always a subsequence
my,...,m, for which
,
— méanos mjz > CVN. (68)
=1
He actually proved the stronger statement
1 2 | T
— cosmjz|dz > CVN. (69)
27 Jo i=1

In this chapter we improve (68). (To appear in [33].)

Theorem 4.1 For any sequence nq,...,ny of positive integers there is a subsequence
mi,...,m, such that
,
— mi m:x > CN.
ménz;cos m;x > CN (70)
]:

Theorem 4.1 is an obvious corollary of the more general theorem that follows.

Theorem 4.2 Let wi > 0 and w = )_{° wi, < co. Then there is a set E of positive integers
for which

— min E wy cos kz > Cw. (71)
* kew

45
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The essential content of this chapter is that the proof of Theorem 4.2 (and consequently
of Theorem 4.1) we give is constructive. Indeed there is a simple non-constructive proof of
our theorem.

Proof of Theorem 4.2 — Non-constructive: (Odlyzko [46]) Define

flx) = wp(coskz)™.
1
Then

L[ e = Sk [k o
= ——w. (73)

Thus there is zg € [0,271) with f(zq) < —%w. Let £ = {k € N : coskzg < 0}. Then

obviously

1
Z coskxrg < ——w.
= T

We now give a constructive proof of Theorem 4.2 with a worse constant. (See Remark
1 after the proof for the exact meaning of the word “constructive”.)

We shall need two lemmas.

Lemma 4.1 Let I, = (ag,br) C (0,1), &k = 1,2,..., be intervals of length at least § > 0
and wy be nonnegalive weighls associaled with them. Let also w = 3 " wy < oco. Then

there is an interval J C (0, 1), with |J| = 8/2, for which

1
Z wy, > §0w. (74)
JCI,

Proof of Lemma 4.1: Let m = [2/6]| and J, = [v0/2,(v+1)8/2),forv =0,1,...,m—1.

Write also s, = Eakejy wy. Since w = 6’”2 s, there is some v < m — 2 for which
w 1
S, > > —fw.
T m—172

Let J = Jy,4+1. Then J satisfies (74) since ay € J,, implies J, 41 C I. O

The following lemma is a useful special case of Theorem 4.2.
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Lemma 4.2 Leta >0, 0 > 1, p > 240,
= [pjaa Upja) NN,

for 7 =0,1,2,..., and
_ !
=J ES.
J=0

Assume also wr, > 0, w =77 wr < oo and wi = 0 outside E'. Then there is a set E C E'
for which

1
— min Z wg cos kx > —w. (75)
T ieE 480

Proof of Lemma 4.2: First observe that in any interval of length at least 27 /k there is
a subinterval of length 27/(12k) in which coskz < —1/2. According to this observation,
for all k € E{ there is an interval I contained in (0,27/a), of length at least 27 /(120a), in
which coskz < —1/2. By Lemma 4.1 (# = 1/(120)) there is an interval Jy C (0,27 /a) of
length 27 /(240a) for which

Z wy, > St Z W. (76)

Jo Clj, keE}
Let Eg = {k € E}: Jo C I}. Then

E wy cos kx < —4 . Z wy, for all z € Jg. (77)
keEy ke E’

Similarly we can find an interval J; C JO, with |J1| = 27 /(120pa), and E; C Ef, such that

Z wy cos kr < ——— Z wyg, for all z € Jy.

keE, 480 keE]

This is possible since p > 240 and therefore Jy is big enough to accomodate all frequencies in
Ef. In the same fashion we define J; O J3 D ..., and Ej, Es, .. .. Finally we set E = | J§° E;.
It follows that (75) is true. O

We can now complete the proof of the theorem.

Proof of Theorem 4.2 — Constructive: Let 0 = 2, p = 64 and write for v =0,...,5
= U [plo?, pla? ) NN,
j=0

Since N = Ug A, there is some vy for which
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An application of Lemma 4.2 with o = 2, p = 64, a = 1 and the collection of wy, for k € A,,

furnishes a set 2 C A,, for which

1

— min Z wy cos kx > mw

keE
O

Remarks
1. The simple proof of Theorem 4.1 mentioned can of course be made constructive by

looking for an z that satisfies
al 1

Z(cos npz)” < ——N

T 27

among the points z; = jh, for j = 0,...,|1/h|. But h has to be smaller than C’n]_vl and
this leads to an algorithm which in the worst case takes time exponential in the size of the
input (which is considered to be the number of binary digits required to write down all
ni,...,nn). For example if ny = 2"V then the algorithm needs time at least C2V but the
size of the input is at most N2.

In contrast, our construction takes time which is polynomial in the size of the input
(in other words, polynomial in Nlogny). Assume that we are given N positive integers
ny < --- < ny and let L = [logy,ny]. Define w; = [{k € N : j = ni}|. The algorithm we

described consists of the following steps. The notation of Lemma 4.2 is used throughout.
1. Find for which v € {0,...,5} inequality (78) is true.

2. Construct the sequence of intervals Jg D J1 D - -- and the sequence of sets Fy, F1,....
This proceeds inductively. Having constructed the interval J,,_; and the set F,, 4

we

a. construct the intervals I, for all n, € E/ ,

b. find (as described in Lemma 4.1) a subinterval J,, of J,,_1 which is big and is
contained in many of the I,,,’s. The set E,, consists of those nj, € E, for which

Jm C 1, .
Notice that the sequences J,, and F,, have length O(L).

After observing that we never need to perform arithmetic with more than O(L) binary
digits, it is easy to see that all the above can be carried out in time O(N - L?), since an

algebraic operation on two numbers, with O(L) binary digits each, takes O(L?) time.
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2. Uchiyama’s proof of (68) is probabilistic (see Section 1.4.5). We give an even simpler
constructive proof of (68). (Of course Uchiyama proved the stronger statement (69) about
the L' norm of a subseries.) Assume ny < ny < --- < ny and let p be any fixed number

between 2 and 3, say p = 5/2. Observe that if ny < pny then

N
— min Z cosnjr > C'N,
J=1
as can be seen by evaluating the function Z;VZI cosn;z for & = (1/24€)/nq1, where € = ¢(p)
is a small positive constant.

Let Ay = nq and define Ay € {nq,...,nn} recursively by
A =min{n; :n; > pAp_1} U {nn}.

Let L be the length of the sequence A;p. That is let Ay be the first A equal to ny. Then
either I > /N or there is some k for which the set

A:{’n]‘:)\k <n; < )\k+1}

has more than v/ N elements. In the first case we have

L-1
—mianos/\j:E >CL>CVN,
x .
=1
since the A;’s form a lacunary sequence with ratio p > 2. Otherwise, according to the

observation above, we have

— min Z cosn;z > C|A| > CVN,
T
n;EA
which completes the proof.
3. It is easy to see that Theorem 4.2 holds also for complex wy, with w = 3 |wi| < oo
tkx

and writing €'*” in place of coskz. Also the minimum in (71) has to be interpreted as the

minimum (or maximum) of the real part.



Chapter 5

An Effective Additive Basis for
the Integers

5.1 Introduction

A set F of nonnegative integers is called a basis if every nonnegative integer can be written
as a sum of two elements of F.. We write r(z) = rg(2) for the number of representations of
x as a + b, with a,b € F and a <b.

Erd6s [14, 15] has proved that there is a basis £ such that

Crlogz < r(z) < Cqlogx (79)

for all positive integers & and for some absolute constants C'1, Cy. For the proof see Chapter
1, p. 6 (see also [2, p. 106] and [25, Ch. 3]). The most widely known proof (in Chapter 1 and
[2, 15, 25]) is probabilistic. It is proved that if we let z € F with a certain probability p,,
independently for all z, then the random set F is such an asymptotic basis (that is (79) is
true for sufficiently large ) with probability 1. Since the probability space used is infinite,
the question of whether such a basis exists which is also computable is not addressed by
this proof.

The original [14] proof though, which has been stated using counting arguments and
not probability, uses an existential argument on a finite interval at a time and can thus
be readily turned into a construction by examining all possible intersections of E with the
interval. But the algorithm which we get this way takes time exponential in n to decide

whether n is in £ or not.

50
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In this Chapter, we give an algorithm which produces the elements of F one by one
and in increasing order, and which takes time polynomial in n in order to produce all the
elements of E not greater than n. We use the method of conditional probabilities (Chapter
1, p. 8 and [2, p. 223]) in order to “derandomize” a modified proof. The method is not
directly applicable to Erdés’s probabilistic proof. We will only show that (79) holds for z
large enough, since, then, with the addition of a finite number of elements to the set £ we
can have it hold true for all positive z.

In Section 5.2 we give a probabilistic proof of the existence of a basis with certain
properties. In Section 5.3 we apply the method of conditional probabilities to derandomize
the proof and arrive to our algorithm.

This will appear in [34].

5.2 Probabilistic Proof of Existence

We define the modified representation function r'(z) = r};(z) as the number of represen-
tations of the nonegative integer z as a sum a + b, with a,b € E, ¢g(z) < a < b, where
g(x) = (zlogz)/2. (This is our main difference from Erd8s’s proof. By doing this modifi-
cation we have achieved that the presence or absence of a certain number n in our set F

affects r'(z) for only a finite number of nonnegative integers z.)

Theorem 5.1 There are positive constants cq,cq, c3, with ¢y < c3, and a set E of positive

integers such that

c2logz < r'(z) < ezloga

and

|EN[z—g(z),z]] <ciloga
for all large enough x© € N.

Proof: In what follows 2 is assumed to be sufficiently large. We define the random set F

by letting

x

1/2
Prize Fl=p.=K - <1ng)

independently for all € N, where K is a positive constant that will be specified later. We

are going to show that with positive probability (in fact almost surely but we do not need
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this here) the random set FE satisfies Theorem 5.1. Let

/2

p=E[r(@)]= 3" ppes

t=g(z)
Define also

s(z) = [EN [z —g(z), ]|

and .
V=EB@I= Y m
t=z—g(z)

First we estimate p and v for large . We have

/2
B> D PiPa—t
t=r/logx
/2
> K21 W — 1)) Y2
> Kot 3 e 0)

= (1+o0(1)IK*logu,

where I = 01/2(5(1 —5))"'/2ds, and
z/2

peo< Y e
1

/2
, z —1/2
< Ix?logg;(t(r —1)7Y
= (14 0(1))]](2 log z,

which proves = (14 o(1))IK?log z.

For v we have

Ko() <M>1/2 <v< Kg(z) (%)1/2,

x
which implies

v={(1+0(1))Klogz.
We define the “bad” events

Ay
B;

{Ir'(z) — p| > en}
{s(z) —v > ev}
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for a positive constant €. To bound their probabilities we need the following Theorem 1.3.
Since both 7/(z) and s() are sums of independent indicator random variables we can use
the theorem to get

Pr[A,] < 2e%# < 26—;—c611{2 logz _ 9,.—a

and

Pr[B,] <2e7 %" < 9e~3ccKlogz _ 9,8

where o = %CEII(Q and § = %CCK. We now let € = 1/2 and choose K large enough to make
both a and 3 greater than 1.
Then -
Z Pr[A;]+ Pr[B;] < o0

r=1
which implies the existence of ng € N such that, with positive probability, none of the

events A, and B, x > ng, holds. In particular there exists a set F for which

p/2 <r'(z) <3u/2

and

s(z) < 3v/2,

for all # > ng. This implies the conclusion of Theorem 5.1 with ¢; = %I(, cy = %IK? and
c3=3IK* O

Observe that 7'(z) < r(z) < r'(z) + s(z). We deduce that for the set E of Theorem 5.1
we have

caloga <r(z) <(c1+ c3)logz

so that (79) is true for E.

5.3 Derandomization of the Proof

We keep the notation of the previous section. We showed that for some ny € N the

complement of the bad event

B= |J (A;UBy)

>ng

has positive probability, by establishing the inequality

> Pr[A.] + Pr[B;] < 1.

r>ng
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This implies the existence of a point E in our probability space {0, l}N which is not in B
(there is a natural identification between points in the probability space and subsets of N).
In this section we are going to show how to construct efficiently such a point E. We give
an algorithm which at the n-th step outputs 0 or 1 to denote the absence or presence of n
in our set F.

Denote by y € {0,1}N a generic element in our space and by R(ay,...,a;) the event
X1 =ai,...,Xx = Gk, Where aq,...,a; € {0,1}. It is obvious that for any event D C {0, 1}N

Pr(D | R(ay,...,an,_1)] = (80)
p.Pr[D | R(ay,...,an—1,1)]+ (1 = po)Pr[D | R(a,...,an_1,0)].
We are going to define the sequence a, € {0, 1} so that the function
b, =bp(ar,...,a,) = Z Pr[A: | R(a1,...,a,)]+ Pr[B: | R(ay,...,a,)]
>ng
is non-increasing in n. (Notice that the function Pr[A, | R(a4,...,a,)] is constant in n

when n > z, and is equal to either 0 or 1. The same is true for the events B,.) Since

bo = 3y>n, PT[Az] + Pr[B;] < 1, the monotonicity of b, implies that

E Pr{A; | R(ay,...,an,...)]+ Pr[B; | R(ay,...,ap,...)] < 1.

>ng
The probabilities above are either 0 or 1, so they are all 0, and the point £ = (a1, ..., ap,...)
is not in B.

So all that remains to be done is to ensure that b, does not increase. Adding up (80)

we get

bn—l(ah ey an—l) = pnbn(ah ceeylp_1, 1) + (1 - pn)bn(aly ceeylp_1, 0)7
which implies that at least one of b,(a1,...,a,-1,1), bp(as,...,an—_1,0) is not greater than
bp_1(a1,...,an_1). Welet a, = 1 if the first number is smaller than the latter, otherwise

we let a, = 0.

Notice that

A

bn(al, ey 1, 1) - bn((ll, .. .,an_l,O)

G(n)
Z Pr[A; | R(ay,...,an_1,1)] — Pr[A: | R(a1,...,a,-1,0)] +

+Pr[B. | R(ai,...,an-1,1)] = Pr[B: | R(a1,...,a,-1,0)],
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where G(n) = (1 4 o(1))n?/logn is the greatest integer k such that g(k) < n. This is
so because the events A, and B, with z > G(n) are independent of x1,..., Yy, and their
probabilities cancel out in the difference above. We have to decide in time polynomial in n
whether A > 0. This is indeed possible since the expression for A has (4 + o(1))n?/logn

terms, each of which can be computed in polynomial time as the following Lemma claims.

Lemma 5.1 Let X =& + -+ & be a sum of k independent indicator random variables
with Pr[&; = 1] = p;, j = 1,...,k. Then the distribution of Xy can be computed in time

polynomial in k.

Proof: The distribution of X} is a vector of length k& + 1, where the j-th coordinate in the
vector, 7 = 0,...,k, is equal to Pr[X; = j]. To compute the distribution of X from that

of X;_1 we use the obvious formulas
Pr(Xy =j] = pePr[Xe—1 =7 = 1]+ (1 —p)Pr[ X1 = 4], forj=1,...k -1,

Pr(X; =0] = (1 — pr)Pr[Xr—1 = 0] and Pr[Xy = k] = pxPr[Xr_1 = k — 1]. It is obvious
now that the computation of the distribution of X} can be carried out in time polynomial
in k. (Here we are really assuming that arithmetic operations on the numbers p; can be
done in time polynomial in k. See the Remarks at the end of the section for a justification
of this assumption.) O

Thus all probabilities of the form Pr[a < X} < ] can be efficiently computed. Observe
that having fixed y1 = a1,...,Xn = @, We have

/2

r'(z) = ) XeXe—t
t=g(x)
/2

= Z At Xz—t + Z XtXz—t
9(z)

n+1

for z — g(z) > n, otherwise 7'(z) has already been completely determined by the assigned
values of x1,..., Xn. This means that r’(z) is a sum of independent indicator random vari-
ables and so is s(z). Thus the probabilities of A, and B, conditioned on R(ay,...,ay_1,1)
and R(aq,...,a,—1,0) can be efficiently computed and A > 0 can be decided in polynomial
time, as we had to show.

Remarks:
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1. Our definition of the probabilities p, = K(logz/z)!/? has to be modified so that

the numbers p, can be represented with a number of digits polynomial in z and can
also be computed in polynomial time, given z. One such modification is to use the
probabilities ¢, = K27 //21 S where I = [logy 2| and § = [v/L]. The number S can
for example be computed in time polynomial in log L (and in particular in z) using a
simple binary search of the interval [0, L]. Since p, < Cq, < Cp, one can easily prove
asymptotic estimates of the form CTK? < y < CIK? and CKlogz < v < CK logz,

which is all our existential proof needs.

. Ignoring polylogarithmic factors, the time our algorithm needs to decide whether

n € E, having already found the set F up to n — 1, is O(n®). This is so since the
distribution of X}, in Lemma 5.1 can be computed in time O(k?). So the computation
of any probability of the form Pr[a < X} < 3] can be computed in time O(k?). For
the computation of A we need to evaluate O(n?) such probabilities with k& = O(n?),

thus the total time is O(n®).



Chapter 6

On a Problem of Erdos and Turan
and Some Related Results

6.1 Introduction

All sequences we consider are sequences of distinct positive integers. We denote by the lower
case indexed letter the members of the sequence and by the capital letter the sequence as
a set as well as its counting function. For example A = {aq,as,...} denotes a sequence of

distinct positive integers and A(z) = |A N [1, z]| denotes its counting function. We define

ba(z)={(a,b):a,b€ A, © = a— b},

?

han(z) = ‘{(a,b) ca,b€ AN[1,N?, o =a— b}

N
HA(lV) = Z hA7N(;L'),
r=1
and
ra(e) = [{(a,b) 1 a,b € A, a < b, & = a+ b}

A conjecture of Erdés and Turan [20] asserts that for any asymptotic basis (of order 2)
of the positive integers, that is for any set £ C N = {1,2,3,...} for which rg(z) > 0 for all
sufficiently large z, we must have

limsup rg(z) = .
r—00

57
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Erdés [60] has proved that it cannot eventually be true that rg(z) = 1, by showing that for
any sequence E, with E(2) > \/z, we have

Hg(N)> Nlog N (81)

for all N. Indeed, any asymptotic basis E satisfies F(z) > /z and, if rg(z) = 1, all sums
we can form with two elements of ' (with the exception of a finite number of elements of
FE) are distinct. This in turn implies that so are all the differences, that is ég(z) < 1 for all
z, which makes (81) impossible.

Recently Helm [27] proved that (81) is best possible by explicitly constructing a sequence
A, with A(z) > /z, for which

H4i(N)< NlogN (82)

for all sufficiently large N. Helm’s proof does not provide any upper or lower bound on the
individual kg n(z) for € [1, N], but only describes the average behaviour.

In addition to this result Helm [27] constructed two sequences B and M, with B(z) >
V@ and M(z) > logz, for which ég(my) = 1, for all k sufficiently large.

In this Chapter we shall use the probabilistic method to improve both results of Helm.
Throughout this Chapter a random sequence A is defined by letting 2 € A with probability

K 2

= ifz > K~
Pz = Ve .

0  otherwise,

for appropriately chosen K, independently for all z.
We prove

Theorem 6.1 Let A be a random sequence as defined above. Then, with probability 1, there

is an integer Ngo and positive constants cq, cq, c3,cq4 such that

ey < A(z) < e/ (83)

and

czlog N < hgn(m) < eglog N (84)
forallz, N > Ng and 1 <m < N.

This implies the first result of Helm and with upper and lower estimates on the individual

han(m). We also prove
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Theorem 6.2 Let M be any sequence which satisfies the growth condition

o0

log my,
. 85
; NGO < (85)

Let also A be a random sequence. Then, with probability 1, there is a subsequence B of A,

an integer Ng and positive constants cs, cq such that

csv/z < B(z) < eav (86)

for all x > Ny and
sp(my) =1 (87)

for all k > Ny.

Helm’s second result follows from Theorem 6.2, but Theorem 6.2 is much stronger, since we
are free to choose the sequence M, subject only to the growth condition (85).

This work will appear in [35].

6.2 Proofs

Proof of Theorem 6.1: Write x; = 1if j € A, x; = 0 otherwise, so that E[y;] = p;.
Notice that

Al) = D x5
71=1
N2—m
han(m) = Y XjXitms
7=1
so that A(z) is a SIIRV and h4 n(m) is the sum of two SIIRV:

han(m) = h n(m)+ kG n(m),

where .
,eA,N(m) = Z Z Xi+km Xj+(k+1)m
J=1k even
and

hfﬁ,N(m) = Z Z Xi+km Xj+(k4+1)m-
i=1k odd
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(We broke up ha n(m) so that each x; appears at most once in each h§ y(m) and A y(m).)

Then, as z — oo,

BlAG) = iwi]—‘

B\/_Z
~ 2[x\/_,

\/W

since 2 = fol ds/\/s. We also have, for m < N and N — oo,

Elhan(m)] = Z PiDi+m

E\/W

N2—m1
< K* ) —~2K’logN,
=1 J
and
N2_m 1
Elhs n(m > 14+ 0(1 K? rar—
Pantm] 2 (4R 2

> (1+0(1)K*logN.

So we have

E[A(2)] ~ 2K/ (88)

as £ — oo and
(14 o(1))K*log N < E[han(m)] < (14 0(1))2K*log N (89)

as N — oo, and for all m < N. Notice that E[h% y(m)] ~ 1E[h4,n(m)] and E[h% y(m)] ~
TE[ha n(m)].
Now fix € = 1/2 and define the bad events
Py
QN,m

{lA(z) — E[A(2)]| > E[A(2)]},
{lha,n(m) — Elha n(m)]| > €E[han(m)]},
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for all 2z, N and m < N. Using Theorem 1.3 and the remarks following it we have
1
Pr[P;] < 2exp(—cE[A(2)]) < 2exp (—56521(\/:;)
and
1 1 -2 Ll K2
Pr(Qnm] < 4exp(—§cEE[hA,N(m)]) < 4eXp(—gc€Ix’ log N)=4N "5

for z and N sufficiently large. Thus

o0 c© N ) 0o ‘ )
DOPr[P4+ Y Y PriQum] < Y exp(—c.KvVa)+ Y N1—geck?,
e=1 r=1 N=1

N=1m=1
The first term in the right hand side is finite, and we choose K large enough to make the
second term also finite, that is large enough to make 1 — t¢,K? < —1. Let now € € (0,1)

be arbitrary. Since the right hand side above is finite, we can find Ny so that
N
ST Pr[P]+ Y. D Pr(Qum] <€ (90)
>Ny N>Ng m=1

which means that, with probability at least 1 — €', none of the events which appear in (90)

holds. We conclude that, with probability at least 1 — €,

(14 o(1))KVE < A(x) < (14 o(1)3K V7,

and
1
(1+ 0(1))51(2 log N < han(m) < (14 0(1))3K*log N,

for all 2z, N > Ng and 1 < m < N. Since ¢ was arbitrary this concludes the proof.

Proof of Theorem 6.2: Let ¢ > 0. By the proof of Theorem 6.1, with probability at

least 1 — €, the random sequence A satisfies

c1(e)vr < A(z) < ea(€)y/m.

We have -
§a(m) =Y XiXjrm = 63(m) + 85(m),
7=1
where

5Z(m) = Z Z Xr+kar+(k+1)‘m

r=1k even
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and

m Z Z Xr+km Xr+(k+1)m -

r=1} odd
Notice that 65(m) and §%(m) are both SIIRV and that E[65(m)] = E[§%(m)] = co. An
application of the Borel-Cantelli Lemma shows that they are both oo, for all m, almost
surely (a.s.), and so is §4(m).

We shall say that a is used by m if a,a+ m € A. Let [, be a sequence of integers which
tends to oo, and whose rate of growth will be determined later. The sequence [, will depend
on the sequence my only. We define f(my) to be the least integer a > I which is used by
my, (it exists a.s. by the previous argument).

For each my we will remove every @ € A which is used by my, except if a = f(my). We

then want to ensure that f(my) and f(my)+ my will not be removed by any m;. Define

:gm

We first prove that the growth condition on the sequence my, implies that 372 w(y)/y < oo:

DR b S SN S
— Y el AV

00 mj 1 00 1
= 7+ -
HE <
+
(z; y\/W] y%ﬂ y3/2)
<y (e, L)

o

Then define the bad event
Er=J U UlveAd&y+mie A& y+m; € A}
k=1 j#k y>1

Clearly no f(my) will be removed by any m;, j # k, if Eq does not hold. We have to bound
the probability of Fq by e:

PrEy] < ABZZZ !

k=1j=1y>I; \/y(y+ mk)(y+ mj)
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o0 o0 1
K3 -

3D

k=193l Y

IN

But since 302, w(y)/y < oo we can choose the numbers [;, large enough to have

3 w(y) < K310 Fe

and then Pr[FE;] < € follows.
Similarly we can bound by € the probability of the event

Ey = U U U{yEA&y—mkEA&y-l-ijA}_

k=17=1y>l

Avoiding F; implies that no integer of the form f(my) 4+ mj can be removed by any m;,
ji=1,2,...

We can now form the sequences
A'={a € A : ais used by some my, k > Ng and a # f(my)}

and

B=A\A

If Ey, E;y are false then 6g(my) = 1 for all £ > Ny and all that remains is to ensure that
B(z) > es(e)/x.

We shall prove that A'(z) < Ze¢1(€)y/z. Note that A’(z) is not a SIIRV and we cannot
use Theorem 1.3 to bound the probability of large deviations from its mean value (which
is € /). Instead, we shall use Markov’s inequality: Pr[X > AE[X]] < 1/A, for X > 0. It
is not really essential in the first part of the proof, that is in bounding the probabilities of
Eq, Es.)

For n > 0 write

Sy = ‘A’ N [2”,2”“)‘.

It is enough to show s, < ¢(€)2/2, with ¢(e) sufficiently small. We have

27t 1

7=2" k=N
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which implies, for n sufficiently large,

E[s,]

<

2"+1—1

]ZQ" kZ]VoV ]+mk
3} fz v

=2

K 22n/2
' Z m

We want to bound by, say, ¢ the probability of the event

o0

Es = [J{s, > ()2}

n=1

By Markov’s inequality, it suffices to show

Y S

n=1 k=Np

\/2” + my,

But the sum on the left can be written as

51+52:C

Y %

n=1 Ek>Ny
my<2"

\/2” + my,

AORY Y

n=1 m>max{2",No }

1

If one writes C'(K, €) for an arbitrary constant that depends at most on K and ¢, then

51

and

S

IN

IN

<

C(K,e¢) i Z 2 n/2

k=Ng n>log, my
%0 9—[logy my1/2

C(K,¢) Z TSP
k—No

C(K,e) Z m_1/27

k=Ny

cro Y ¥

k= N() 2"<mk
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We now choose Ny large enough to make both S; and Sy smaller than ¢/2. Since the

probabilites of Fy, Fy and FE3 have been shown smaller than the arbitrary ¢, the proof is

complete.
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